

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER SUPPLIMATARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 101

COURSE TITLE:

FUNDAMENTALS OF CHEMISTRY II

DURATION: 2 HOURS

DATE: 16/10/2018

TIME: 3:00-5:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

- Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 5 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Important information; (R: $8.314 \text{Jk}^{-1} = 0.0821 \text{L}$ atm mol⁻¹k⁻¹, 1 atm $101325 \text{NM}^{-2} = 101325 \text{Pa} = 760 \text{mmHg}$)

Question one (30 marks)

a) The van der waals equation of state expressed as

$$(P + \frac{n^2a}{V^2})(V - nb) = nRT$$

- i) State the meaning of each of the following terms: P, V, n, R and T [05]
- b) Write an expression for the law of mass action for the Haber process reaction [04]
- (b) A sample of oxygen gas at 25°C is compressed from 200 cm³ to 0.240 cm³. Its pressure is now 3.00 mm Hg. What was the original pressure of the oxygen? [03]
- (c) When 0.08 moles CO, 0.14 moles of H_2 , and 0.08 moles of CH_4 are placed in a 1-L vessel at temperature T and allowed to come to equilibrium. The mixture is found to contain 0.01 moles H_2O for the reaction:

$$CO(g) + 3 H_2(g) \rightarrow CH_4(g) + H_2O(g)$$

What is the equilibrium constant, *K*?

[04]

- (d A buffer solution was made by adding 3.28g of Sodium Ethanoate to $1 \, \text{dm}^3$ of 0.01 mol dm⁻³ ethanoic acid. What is the PH of the buffer solution? Calculate the change in pH of this buffer when $1 \, \text{cm}^3$ of NaOH was added to it. Comment on the result. K_a (CH_3COOH) = 1.7×10^{-5} moldm³. [03]
- e) Calculate, using the ideal gas equation and the van der Waals equation the pressure exerted by 1.00 mole of CO₂ at 0°C in a 22.4 L container. Assuming that the gas in (i) above is compressed so that it fills a container that has a volume of only 0.200 liters. Calculate, using the ideal gas equation and Van der Waals equation the new pressure. (a =3.597atm/moL and b=0.04267atm/mol)
- f) How is a buffer solution prepared? [02]
 - j) State Faraday's first laws of electrolysis. [02]
 - k) What do you understand by the term electrolyte? [01]
 - Write the expression of the Nernst equation that relates the instantaneous electrode potential to the reaction quotient.

Question Two (20 marks)

 a). i. What is solubility of a salt? ii. The solubility for silver bromide is 8.8x10-7 M. Determine its solubility product 	[01]	
b). Explain the following types of Physical Equilibria	[02] [03]	
 i. Solid – Liquid Equilibrium ii. liquid – Liquid Equilibrium 		
c). What is the concentration of a saturated lead chloride solution? K_{sp} (PbCl ₂) = 1.17	x 10 ⁻⁵ .	
d). A new chemical compound has been discovered with the formula A_2B . If a saturate of A_2B has a concentration of 4.35×10^{-4} M, what is the solubility product constant for	d solution	
(e)A certain malt liquor contains 7% ethanol (C_2H_5OH) by mass. Calculate the mole framolarity and the molality f). Give four Colligative properties		
Question Three (20 marks) (a) When 4.50 g of ethyl butyrate, a compound containing C,H, and O, undergoes combustion, 10.24 g of CO ₂ and 4.19 g H ₂ O are produced.		
Determine the empirical formula of this compound	[04]	
(b) i). State and the factors that influence equilibrium concentrations	[06]	
ii). Explain the effect of common ion on solubility.	[02]	
d. Lead chloride at first precipitates when sodium chloride is added to a solution of le Later, when the solution is made more concentrated in chloride ion, the precipitate (Note the lead ion forms the complex ion PbCl ₄ ²⁻). Explain what is happening.	ead nitrate. dissolves. [04]	
e). You are asked to analyze a solution for the cations Zn ²⁺ , Ag ⁺ , and Ba ²⁺ . hydrochloric acid. A precipitate forms. You filter out this solid and add sulfuric a solution. A white precipitate forms. You filter out this solid also, and then add hydrog to the solution. Nothing appears to happen. Which cations were present in the original	acid to the gen sulfide	

Question Four (20 marks)

a) Describe experiments to demonstrate the products formed in the electrolysis sulphuric acid using carbon electrodes. [03]

b) An element X has r.a.m of 88. When a current of 0.5A was passed through the fused chloride of X for 32minutes and 10 seconds, 0.44g of X was deposited at the cathode. (Use 1 Farad = 96,500 coulombs)

i. Calculate the quantity of electicity needed to liberate one mole of X. [04]

ii. Write the formular for the cation of X. [01]

iii. Write formular for the chloride of X. [01]

c)

i) For a galvanic cell combining Zn and Cu, calculate the standard cell potential E° (given standard reduction potential for Zn^{2+} is -0.76V and that for Cu^{2+} is +0.34V) [03]

ii) Calculate the cell potential for the Zn//Cu cell at $[Zn^{2+}_{(aq)}] = 10M$ and $[Cu^{2+}_{(aq)}] = 0.1M$ [03]

d) The oxidation and reduction half cell reactions of the following overall process exist in separate half cells.

$$Cr_2O_7^{2^{-}}(aq) + I^{-}(aq)$$
 $Cr^{3^{+}}(aq) + I_{2(s)} E^{\circ} = 0.8254V.$

Given the stoichiometric equation is,

$$Cr_2O_7^{2-}(aq) + 6 I_{(aq)}^{-} 14H_{(aq)}^{+}$$
 $Cr_{(aq)}^{3+} + 3 I_{2(s)} + 7H_2O_{(l)}$

and the different concentrations are tabulated

Species	Concentration
Cr ³⁺ (aq)	2.0×10^{-3}
$Cr_2O_7^{2-}(aq)$	2.0
$H^+_{(aq)}$	1.0
I-(aq)	1.0

Calculate the instantenoues cell potential for the cell.

[05]

Question five (20 marks)

a) Define the following terms;i) Phase Equilibrium:

i) Phase Equilibrium: [02]
ii) Binary Isomorphous Systems: [02]
iii) Binary Eutectic Systems: [02]

iv) Component of a system: [02]

v) Solubility Limit: [02]

b) Draw a schematic representation of the one-component phase diagram for H_2O . The projection of the phase diagram to show information at 1 atm generating a temperature scale labeled with the familiar transformation temperatures for H_2O (melting at $0^{\circ}C$ and boiling at $100^{\circ}C$).