

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 101

COURSE TITLE:

FUNDAMENTALS OF CHEMISTRY 1

DURATION: 2 HOURS

DATE: 17TH JANUARY 2018TIME: 2 - 5PM

INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Answer Question ONE and ANY other TWO Question. (70Marks)

Important information; R: $8.314 \text{Jk}^{-1} = 0.0821 \text{L}$ atm $\text{mol}^{-1} \text{k}^{-1}$, 1 atm $101325 \text{NM}^{-2} = 101325 \text{Pa} = 760 \text{mmHg}$

Question ONE (30 Marks)

Question One

a). State the following			
i). Boyle's law	(2marks)		
ii). Daltons law of partial pressure (2marks)			
b). Explain the terms acids and bases according to Arrhenious and Bronsted-Lowry concepts			
	(4marks)		
c). The volume of a gas at 2 atmospheres is 399 cm ³ at 5 ⁰ C. Calculate the volume that will occupy if the pressure is increased to 2.5 atmospheres at the same temperature	t the gas (3marks)		
d). If it takes 30 seconds for 100 cm^3 of carbon (iv) oxide to diffuse across a porous plong will it take for 200 cm^3 of NO_2 to diffuse across the same porous plate under sin conditions? ($C = 12.0, N = 14.0, O = 16.0$)	olate. How nilar (3marks)		
e). The solubility of Agcl is 1.67×10^{-5} moles per litre at 25° C. Calculate the solubility of Agcl.	ty product (3marks)		
f). State the four assumptions of the kinetic theory of matter	(4marks)		
g). Write the equilibrium expression for kc and kp for the following reaction	(2marks)		
CO_g + $3H_{2g}$ CH_{4g} + H_2O_g			
h). Consider the reaction given below			
$2SO_{3g}$ $\longrightarrow 2SO_{2g} + O_{2g}$			
At temperature of 1000 K, kc has the value of 4.07×10^{-3} . Calculate the value for kp(3marks)			
i). Basing your answer on Raouts, state three colligative properties of dilute solutins	(3marks)		
j). State the <i>Le Châtelier's principle</i> .	(1Mark)		
Question TWO			

Consider the following electrochemical cell whose E⁰ of the cell is 1.10V.

Zn/ZnSO₄ (0.05M) /CuSO₄ (5M)/Cu

- i) Write the half-cell reactions and the overall reaction4Marks
- ii) Draw the cell diagram and show the flow of electrons 5Marks
- iii) Calculate the e.m.f of the cell given that the standard e.m.f of the cell is 1.10 V

 4Mark
- iv) Explain Two application of electrolysis

4Marks

v) In an experiment to electrolyte copper(11)sulphate solution using copper electrodes

0.2 amperes were passed through the solution for 1,930 seconds. The mass of copper

Cathode increased from 6.35 to 6.478g. Find the charge on a copper ion (1F=96500C

Cu = 64) 3Marks

Question THREE

1 a) Define the following terms

(4 marks)

- (i) Molar mass
- (ii) Avogadro's number
 - (iii) Formular mass
- (iv) Elemental analysis
- (b)A sample of a certain alcohol is known to contain only C, H and O. Combustion of 0.255 grams of the alcohol produces 0.561 grams of CO₂ and 0.306 grams of H₂O. From this information determine the empirical formula of the alcohol 6Marks
- (c) Iron can react with Chlorine gas to give two different compounds, FeCl₂ and FeCl₃. Under given conditions, 0.558 grams of metallic Fe react with Chlorine gas to yield 1.621 grams of Iron chloride. Which Iron compoundis produced in the experiment?

 4Marks
- (d)Lysine is an amino acid which has the following elemental composition: C, H, O, N. In one experiment, 2.175 g of lysine was combusted to produce 3.94 g of CO2 and 1.89 g H2O. In a separate experiment, 1.873 g of lysine was burned to produce 0.436 g of NH3. The molar mass of lysine is approximately 150 g/mol. Determine the empirical and molecular formula of lysine.

4Marks

e) Differentiate between empirical formula and molecular formula of a compound2Marks

Question FOUR

(a) Define the ideal gas equation $\frac{p v}{T}$ = nR5Marks	
(b)Explain why real gases do not obey the ideal gas equation	3Marks
(c)State and explain the application of the equilibrium constant	6Marks
(d) Calculate the pressure for 5.0 dm ³ of 2.0 moles CO ₂ at 298 K, using	
(i) The ideal gas law	3Marks
(ii) The Van der waals equation (a = $3.592 \text{ L atm/mol}^2$, b = 0.04267 l/mol)	3Marks
Question FIVE	
(a)Calculate the PH of 0.07 M H ₂ SO ₄ 2Marks	
(b) Define the following terms	2Marks
(i) Saturated solution	
(ii) Solubility	
(c) State three factors that affect the solubility of a substance	3Marks
(d) The K_{sp} for magnesium chloride is 3.9×10^{-11}	
(i) Calculate the concentrations ofmagnesium chlorideions in a solution of M	IgCl ₂ at 25 C
5Marks	
(ii) Determine the solubility ofMgCl ₂ in g/l.	2Marks
(c) i). What is a buffer solution	2Marks
ii).How is buffer solution prepared?	2Marks
iii) State the application of a buffer solution	2Marks