

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 101

COURSE TITLE:

FUNDAMENTALS OF CHEMISTRY II

DURATION: 2 HOURS

DATE:6/8/2018 TIME: 9-11AM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 5 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Important information; (R: 8.314Jk⁻¹ = 0.0821L atm mol⁻¹k⁻¹, 1 atm 101325NM⁻² =101325Pa =760mmHg)

Question one (30 marks)

- 1 (a) state the following gas laws (2mrks)
 - (i) Charles Law.
 - (ii) Gay-Lussac'c Law.
- (b) A sample of a gas at 27 °C is compressed form 300 cm³ to 60 cm³. Its pressure is now 3.00 mm Hg. What was the original pressure of the gas? (3mks)
- (c) State two application of the buffers solution(2mks)
- (d) (i) Explain the difference in the terms Molarity and Molality (2mks)
- (ii) Write an equation to show how the mole fraction of a component can be expressed(2mks)
- (e) (i) Given the following general equation write an expression to show how one can get the equilibrium constant K_c . (2mks)

$$aA+bB \Leftrightarrow cC + dD$$

- (ii) In an experiment, a mixture of H_2 , N_2 and NH_3 was allowed to reach equilibrium conditions at 473 °C. The concentration of the gases at equilibrium was analyzed and found to contain 0.1207 M H_2 , 0.0402 M N_2 and 0.00272 M NH_3 . What was the value of the equilibrium constant Kc? (3mks)
- (g) Find the pH of a solution that contains 0.0034 lactic acid (Ka= $1.4x10^{-4}$) and 0.056 M Propanoic acid (Ka= $1.4x10^{-5}$) (3mks)
- (h) Solubility product constants are usually specified for 25 °C. why does the Ksp value for a chemical compound depend on the temperature (3mks)
- (i)One form of the Nernst equation is

$$E = E^O - \frac{2.303 \times RT}{nF} \log Q$$

- (i) Write the meaning of the terms in the equation (4mks)
- (ii) How would increase in concentration change the E.M.F of the cell if all the other conditions are kept constant?(2mks)

Question 2 (20 marks

- 2 (a) Define the following terms (6mks)
 - (i) Mole
 - (ii) Atomic mass
 - (iii) Molar mass
- (b) Iron can react with chlorine gas to give two different compounds, $FeCl_2$ and $FeCl_3$. Under given conditions, 0.558 grams of metallic Fe react with chlorine gas to yield 1.621 grams of iron chloride. Which iron compound is produced in this experiment? [Fe=55.85, Cl=70.90] (5mks)
- (c) Lysine is an amino acid which has the following elemental composition: C, H, O, and N. In an experiment 2.175 g of Lysine was combusted to produce 3.94 g of CO_2 and 1.89 g H_2O . In a separate experiment, 1.873 g of Lysine was burned to produce 0.436 of NH_3 . The molar mass of Lysine is approximately 150 g/mol. Determine the empirical and molecular formula of Lysine. (5mks)
- (d) A compound A contains 5.2 % by mass of nitrogen as well as C, H and O. Combustion of 0.0850 g of compound A gave 0.224 of CO_2 and 0.0372 g of H_2O . Calculate the empirical formula of A. (4 mks)

Question 3 (20 marks

- 3 (a) (i) State Dalton's Law of Partial pressures (2mks)
 - (ii) What pressure is exerted by a mixture of 2.00~g of H_2 and 8.00~g of N_2 at 273~K in a 10 litre vessel? (5mks)
- (b)A hydrogen gas thermometer is found to have a volume of 100.0 cm³ when placed in an icewater bath at 0 °C. When the same thermometer is immersed in boiling liquid chlorine, the volume of hydrogen at the same pressure is found to be 87.2 cm³. What is the temperature of the boiling point of chlorine? (4mks)
- (c) (i) Calculate the pressure exerted by 1.00 mole of methane (CH₄) in 250 ml container at 300 K using van der waal's equation. What pressure will be predicted by the ideal gas equation? (6mks)
- (d) Calculate how much faster He will diffuse than Oxygen at 298 K? [He=2 O=16](3mks)

Question 4 (20 marks

- 4 (a) (i) What is solubility (2mks)
 - (ii) Briefly explain the effect of temperature on the solubility of solids in solutes (2mks)
 - (b) (i)State Raoult's law(2mks)
- (ii) The vapour pressure of water at 20° C is 17.5 torr. If sucrose is added to a mole fraction of 20 % what is the resulting vapour pressure of H_2O (3mks)
- c)(i) What is corrosion of Iron? (2mks)
- (ii) Using a diagram, show how cathodic protection works in prevention of corrosion of iron (3mks)
- (d) Consider the voltanic cell

$$Cd_{(s)}/Cd^{2+}_{aq}//Ni^{2+}_{(aq)}/Ni_{(s)}$$

- (i) Write the half-cell reactions and the overall reaction (3mks)
- (ii) Make a sketch of this cell and label it showing the anode, cathode and direction of electron flow (3mks)

Question 5 (20 marks

- 5 (a) The solubility for silver bromide is 8.8×10^{-7} M. Determine its solubility product Ksp (3mks)
- (b) What is the concentration of a saturated silver I acetate solution Ksp

$$(AgC_2H_3O_2) = 1.94x10^{-3} (3mks)$$

- (c) What is the concentration of a saturated lead chloride, Ksp $(PbCl_2) = 1.17x10^{-5}$ (3mks)
- (d) I have discovered a new chemical compound with the formula A_2B . If a saturated solution of A_2B has a concentration of 4.35×10^{-4} M, what is the solubility product constant for A_2B .(3mks)
- (e) Solubility product constants are usually specified for 25 °C. Why does the Ksp value for a chemical compound depend on the temperature?(3mks)

(f) a) The van der waals equation of state expressed as

$$(P + \frac{n^2a}{V^2})(V - nb) = nRT$$

i) State the meaning of each of the following terms: P, V, n, R and T (3mks)