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Abstract

A monumental achievement in group theory was done with the announcement of the

completion of classification of simple finite groups in 2004. The proof of this work which

was termed, a theorem, consists of tens of thousands of pages in several hundred journal

articles written by about 100 authors, published between 1995 and 2004. Such voluminous

work cannot be understood by any single person. Attempts to simplify the proof has

already been embarked on. It is thought that a knowledge of internal structures associated

with the groups and more so representation theoretic methods, could go along way to help

simplify the proof. This has sparked research of combinatorial objects like codes obtained

from groups and their interplay. This thesis is a study of linear binary codes obtained from

primitive permutation representations of the simple finite classical group U3(4). Using the

established magma databases and the Meataxe software, we consider for each primitive

representation over F2, the permutation module obtained from the action of the group

on the cosets of its maximal subgroups and the subsequent maximal submodules. Each

submodule constitutes a binary code invariant under the group. In this thesis we study

linear binary codes, designs and graphs obtained from the group U3(4). Using modular

theoretic methods , we construct and enumerate all linear binary codes and designs from

primitive permutation representations of degrees 208 and 416 and classify most of the

codes. Furthermore, we determine their properties and establish the interplay between

these codes and other combinatorial objects like designs and graphs. In the process, we

have uncovered the lattice structure of the submodules. We have also determined the

full automorphism groups of the codes and designs. Codes are applied in many areas

particularly in error correction, storage and transmission of data. The properties of a

code determines its usage. We found some codes with good parameters. We found some

self-orthogonal, doubly even codes, irreducible and decomposable codes.
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Symbols and abbreviations

Ω A set

A∗ Conjugate transpose of A

∅ Empty set

F A Field

Fq The Galois Field of q elements

FG Group ring of G over F

G Group

|G| Order of a group G

K ≤6 G K is a subgroup of G

H ∼= G H is Isomorphic to G

[n, k, d]q A q-ary code of length n and dimension

k and minimum distance d

[n, k]q A q-ary code of length n, dimension

k

(D,P, I) An incidence structure with P points and B blocks

GL(V ) General linear group over V

dim(V) The dimension of a vector space V

Sn The symmetric group on n symbols

Aut(C) Automorphism group of a code

U3(4) Unitary group with the order 62,400

V Vector space
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Chapter 1

Introduction

This thesis is a study of linear binary codes, designs and graphs obtained from primitive

permutation representations of the Unitary group U3(4) . The reliability of a communi-

cation system may depend on error-correcting codes and the decoding algorithm being

used [19,23]. Codes are used for storage and transmission of data in computer systems.

Graphs can be used to measure regularity of events, track events and detect the level of

corruption in a system . Designs on the other hand can be used in sampling techniques

by Statisticians.

The general objective of this study was to study linear binary codes, designs and graphs

preserved by the group U3(4). The specific objectives of the study were to construct

and enumerate G - invariant codes and determine some of their properties, determine t-

designs using codewords of the codes and their primitivity and construct symmetric 1-

designs and regular connected graphs preserved by the primitive groups using a series of

computer programs in Magma.

A lot of studies have been done on the external Structures of Simple groups which was

completed in 1981 and documented in 1983 by Daniel Gorenstein. The study of the un-

derlying structures of simple finite groups is little known and thus not complete. Brooke

in [4, 5] found all codes from the primitive permutation representations of the simple

groups PSU4(2) and PSU3(3). In particular they examined all binary codes arising from

primitive permutation representations of these groups. The authors in [9] enumerated all
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non-trivial codes from the 2-modular representations of simple group A8 using a chain of

maximal submodules of a permutation module induced by the action of A8 on objects such

as points, Steiner S(3, 4, 8) systems, duads, bisections and triads.The results revealed the

the underlying structure of A8.

The group U3(4) falls under the classical groups. This group has been classified in terms

of maximal subgroups. Much information is known on classical groups after the simple

finite group classification. The proof of classification theorem consists of tens of thousands

of pages in several hundred journal articles written by about 100 authors, published be-

tween 1955 and 2004 and is not understood by many people. It is generally understood

that the knowledge of internal structures could simplify the proof of this theorem of the

classification problem.

This thesis is organised into four chapters. Chapter one is the introduction that gives

the general overview of coding theory, statement of the problem, general and specific

objectives and significance of the study. In chapter two, preliminary materials and results

on groups and combinatorial structures that are used in this thesis are discussed.

In chapter three, two methods of construction of codes and designs are discussed. In the

first method, a group G acts on maximal subgroups(from the atlas) over a finite field

with two elements to obtain a permutation module. This permutation module decom-

poses into maximal submodules using meat axe program. These submodules are codes

invariant under this group. In the second method, a group G acts on a primitive per-

mutation representation to obtain a maximal subgroup which is a point stabilizer in G.

From the orbits of the point stabilizer, symmetric 1- designs and consequently from the

designs, the desired codes are constructed.
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In chapter four, we constructed and enumerated all G-invariant codes from primitive

permutation representation of degrees 208 and 416. We uncovered the lattice structure.

Properties of the linear binary codes were studied. We found 10 self orthogonal codes of

length 208, 4 doubly even codes of length 208, two irreducible codes [208, 64] and [208

,16, 72]. We also found 17 decomposable codes of dimensions 91, 90, 90, 90, 81, 80, 79,

78, 78, 78, 67, 66, 66, 66, 65, 55 and 17. There were 7 reducible codes of dimension 89,

77, 65, 54, 54 , 54 and 53 . There were also 6 non-isomorphic self dual [416, 208 ] codes

of length 416. We determined t-designs using weights of codewords of some linear binary

codes of length 208. The designs 1-(208, 72, 144), 1-(208, 120, 120), 1-(208, 72, 144 and

1-(208, 136, 272) were primitive. Others were not primitive. Symmetric 1- designs were

determined from the primitive permutation representation of degrees 208, 416 and 1600.

It was found that the automorphism group was either 22 : U34 , U34 , 2 : U34 or 2 : A208.
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Chapter 2

Basic Concepts

In this chapter, we discuss basic concepts on groups and combinatorial structures that

are used in this thesis. For additional information, [ 7, 12, 13, 18, 19, 21, 22,23, 29, 30,

31, 33, 34, 37 ] can be read.

2.1 Groups

Definition 2.1.1. A group is a set G together with a binary operation

(a, b) 7→ a ∗ b : G×G→ G satisfying the following conditions:

G1: (associativity) for all a, b, c ε G,

(a ∗ b) ∗ c = a ∗ (b ∗ c) ;

G2: (existence of a neutral element) there exists an element e ε G such that

a ∗ e = a = e ∗ a

for all a ε G,

G3: (existence of an inverse) for each a ε G, there exists an a−1 ε G such that

a∗ a−1 = e = a−1 ∗a .

The aim of this section is to bring together a selection of mostly recent results on groups

important in subsequent chapters . The background materials and results on groups can

be found in [7, 22, 30, 31,35].
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2.1.1 Simple groups

A simple group is a non-trivial group whose only normal subgroups are the trivial group

and the group itself [34]. A subgroup H of a group G is called normal if gH = Hg for all

g ε G. Every finite simple group is isomorphic to one of the following groups: A cyclic

group with prime order, an alternating group of degree at least 5, a simple group of Lie

type and the 26 sporadic simple groups [29].

2.1.2 Permutation Groups

Definition 2.1.2. The symmetric group on a set Ω is the group SΩ of all permutations

of Ω. If Ω is a finite of cardinality n , then SΩ is often denoted by Sn . A permutation

group G on a set Ω is a subgroup of SΩ.

Definition 2.1.3. Let G be a group and Ω be a set. An action G on Ω is a function

which associates to every α ∈ Ω and g ∈ G an element αg of Ω such that, for all α ∈ Ω

and all g, h ∈ G, αe = α, (αg)h = αgh.

2.1.3 Automorphism Groups

The automorphism of a group G, denoted by Aut (G) is the set of all automorphisms of

G, under the operation of composition. i.e It is an isormorphism G→ G.

Lemma 2.1.4. Let g be any element of the group G. Define a map φg : G → G by

φg (x)= gxg−1 for all x ∈ G . Then φgan automorphism of G , is known as an inner

automorphism corresponding to g.

Proof. φg is a homomorphism , since

φg(xy) = gxyg−1 = gxg−1gyg−1 = φg(x)φg(y).
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The inner automorphism φg−1(x) = g−1xg clearly inverts φg. Since φg is an invertible

homomorphism,it is an automorphism.

The set of inner automorphisms of G is denoted Inn G.

Remark 2.1.5. If G is abelian, then

φg(x) = gxg−1 = gg−1x = x = id(x).

That is, in an abelian group, the inner automorphisms are trivial. More generally, φg = id.

if and only if g ∈ Z(G).

The existence of automorphism for a group G provides rich arrangement of elements in

the group and thus allowing the use of deeper results from group theory.

2.1.4 Primitive Groups

If G is a permutation group on a set Ω ; then a partition P of Ω is said to be G−invariant

(and G is said to preserve P ) if the elements of G permute the blocks (elements of P )

of P blockwise. The blocks of a G−invariant partition are called blocks of imprimitivity

for G. If G is transitive on Ω then all blocks of a G−invariant partition have the same

cardinality and G acts transitively on P . Moreover, every permutation group G on Ω

preserves two partitions namely Ω and {{α}|α ∈ Ω} ; these are called trivial partitions of

Ω and their blocks Ω and α are called trivial blocks of imprimitivity. All other blocks of

Ω are said to be non-trivial.

A permutation group G is said to be primitive on Ω if G is transitive on Ω and the only

G− invariant partitions of Ω are the trivial partitions. Also G is said to be imprimitive

on Ω if G is transitive on Ω and G preserves some non-trivial partition of Ω.

Theorem 2.1.6. (Characterization of primitive permutation groups) Let G be a transitive
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permutation group on a set Ω . Then G is primitive if and only if for each α ∈ Ω ; the

stabilizer Gα is a maximal subgroup of G.

Proof. See [3 ]

By the above theorem it follows that, if we know all the maximal subgroups of a group

G then we know all the primitive actions. We have also seen that a transitive action

is equivalent to an action on the coset space G�H. In view of this, we conclude that

a primitive action is equivalent to the left multiplication action of G on the coset space

G�H where H is a maximal subgroup of G. We shall apply this fact to find designs

and codes from the primitive permutation representations from finite group in the later

chapters.

2.2 Combinatorial Structures

This section focuses on combinatorial structures which are important in subsequent chap-

ters. For more information on codes and combinatorial structures, we see [12, 22].

2.2.1 Linear codes

In order to define codes that we can encode and decode efficiently, we add more structure

to the codespace. We are mainly interested in linear codes where we develop the basics

of linear codes. We let Fq be a finite field of order q and its vector space of n−tuples of

elements by V = Fnq .

x · y = xyt where yt is the transpose of y is the standard dot product of x and y in

V . The subspace spanned over Fq by the subset {x1, x2, ..., xn} of V will be denoted by

〈x1, x2, ..., xn〉 [35].

Definition 2.2.1. Let F be a set of q elements. A q−ary code C is a set of finite sequences

7



of the elements of F , called codewords. i.e C = w1, ..., wi ⊆ (Fq)n. Where Fq is a

set of q symbols and n is the length of each element of the code. If all the codewords are

sequences of the same length n , then C is called a block code of length n.

The set (Fq)n is endowered with the Hamming distance defined as follows:

Definition 2.2.2. Let C be a q-ary code and x and y words in C. The Hamming distance

between x and y , denoted by d(x, y) , is the number of positions in which the words x and

y differ.

i.e d(x, y) = |i : xi 6= yi|.

Definition 2.2.3. The minimum distance d of C is the smallest Hamming distance be-

tween any two distinct words in C , that is d = min(x, y)|x, y ∈ C, x 6= y}.

It is important to note that the minimum distance of a code is an important parameter

that measures the capacity to detect and to correct errors.

Lemma 2.2.4. Let C be a code with minimum distance d.If d > s + 1 > 2, then C can

be used to detect up to s errors.If d > 2t+ 1, then C can be used to correct up to t errors.

Definition 2.2.5. The Hamming weight w(c) of a codeword c is the number of nonzero

components in the code word.

Definition 2.2.6. A linear code C of length n over the field Fq is a subspace of Fnq . We

write C = [n, k]q where dim(C) = k.

Every linear code of length n over Fq contains the zero vector 0 ∈ Fnq whose entries are

all the zero elements of the field. If d(x, y) is the Hamming distance of x, y in C, then

x− y is in C and d(x, y) = d(0, x− y). This implies that for a linear code, the minimum

distance d of the code is the smallest number of non-zero entries of the codewords of the

code.
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Definition 2.2.7. A linear binary (n, k) code C is a k -dimensional subspace of the

n-dimensional vector space over GF(2).

Definition 2.2.8. Let C be a [n, k]q code. A generator matrix for C denoted by G is a

k × n matrix obtained from any k linearly independent vectors of C.

NOTE: The generator matrix can be used for a linear code to encode a message.

Definition 2.2.9. Let C be a linear code of length n over the field Fq. The weight of a

word x in C is defined to be wt(x) = d(0, x).

It is noted that the minimum distance of a linear code C is the minimum weight of

the code. When the minimum weight d of a linear code C = [n, k] is known, we write

C = [n, k, d]q. For a linear code C = [n, k, d]q, we have the Singleton bound d ≤ n−k+1 .

Let C be a linear [n, k, d]q code. We let Ai(c) denote the number of codewords at distance

i from a codeword c ∈ C. The numbers Ai(c) where 0 ≤ i ≤ n , are called the weight

distribution of C with respect to c. The weight distribution classifies codewords according

to the number of non-zero coordinates.

Definition 2.2.10. Let C be a [n, k]q code. The dual code or orthogonal code of C denoted

by C⊥ is the orthogonal under the standard inner product, that is C⊥ = {v ∈ Fnq |(v, c) = 0

for all c ∈ C.

For dim(C) + dim(C⊥) = n, C⊥ is simply the null space of a generator matrix for C.

Taking G to be the generator matrix for C = [n, k]q, a generator matrix H for C⊥ is a

(n− k)× n matrix that satisfy GHT = 0, that is c ∈ C if and only if cHT = 0 ∈ Fn−kq .

Definition 2.2.11. Any generator matrix H for C⊥ is called a parity-check or check

matrix for C. If G is written in the standard form [Ik|A], then H = [−AT |In−k] is a check

matrix for the code with generator matrix G.
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Theorem 2.2.12. Let H be a check matrix for a [n, k, d]q code C. Then every choice of

d− 1 or fewer columns of H forms a linearly independent set. Moreover if every d− 1 or

fewer columns of a check matrix for a code C are linearly independent, then the code has

minimum weight at least d.

Proof. See [ 1,Theorem 2.3.1 ]

Theorem 2.2.13. If C is a q−ary linear code of dimension k of Fn, then dual code of C

denoted by C⊥ is the orthogonal compliment of C in Fn; that is

C⊥ = x ∈ Fn|(x, y) = 0∀x ∈ C.

If C ⊆ C⊥, then C is self-orthogonal and if C = C⊥, then C is self-dual. A binary code is

doubly-even if all its codewords have weight divisible by 4. Thus doubly even codes are

self orthogonal.

Definition 2.2.14. An isomorphism of C onto itself is called an automorphism of C if

C is a linear code of length n over Fq . An automorphism group of C is the set of all

automorphisms of C and is denoted as Aut(C). Any automorphism of the code preserves

each weight class of C. If C ⊆ FΩ
q , then the automorphism group of C is a subgroup of

Sn.

The existence of automorphism for C can provide a richer structure for the code and allow

the use of deeper results from group theory.

2.2.2 Designs

Combinatorial design theory deals with the problem of existence of arrangement of objects

into subsets of the same size such that any t of these objects will belong to the same

number of common subsets [1,2 ].

10



Definition 2.2.15. An incidence structure is a triple I = (P,B, I), P is called the point

set, B is called the block set and I is an incidence relation between P and B. The elements

of I are called flags.

Definition 2.2.16. The structure D = (P,B, I), where P is the point set, B is the block

set and I is the incidence is a, t− (v, k, λ) design, where |P | = v. When a design D has

the same number of points and blocks , it is called symmetric . A t − (v, k, 1) design is

called a Steiner System. A 2− (v, 3, 1) Steiner system is called a Steiner Triple System.

A t− (v, 2, λ) design D can be regarded as a graph with ρ as points and β as edges.

Definition 2.2.17. Dt = (Bt, P t, I t) , is the dual structure of D for P t = B,Bt = P and

I t = {(B, p)|(p,B) ∈ I}.

Note: Given a labelling on the point and block sets of D the transpose of an incidence

matrix for D is an incidence matrix for Dt. We will say that the design is symmetric if it

has the same number of points and blocks, and self-dual if it is isomorphic to its dual.

We shall be concerned mostly with t- designs and symmetric 1-(v, k, k) designs. Theorem

4.1.1 in [ 15 ] justifies the construction of t- designs. In Theorem 3.3.1 we give a method

to construct symmetric 1-(v, k, k) designs. These designs will result from the primitive

permutation representations of groups.

2.2.3 Graphs

A graph G is an ordered pair (V,E) , where V is a non-empty finite set of vertices and

E is a set of pairs of distinct vertices in G , called edges. The valency of a vertex is the

number of edges containing the vertex. A graph is regular if all the vertices have the same

valence[1,2, 21 ].
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A connected graph onN vertices is said to be strongly regular with parameters (N,K, λ, µ)

if it is regular with valency K and if the number of vertices joined to two given vertices

is λ or µ according as the two given vertices are adjacent or non-adjacent;we shall always

exclude the null and complete graphs. If C is a [n, k]q code, then the code C is related to

a strongly regular (N,K, λ, µ) graph where the Eigen values of the adjacency matrix A

of the graph are K, ρ1, ρ2; where:-

ρ1, ρ2 = 1/2[λ2 − µ]±
√
d

and d = (λ− µ)2 + 4(K − µ).

We shall be concerned with how codes interplay with graphs.

2.3 Representations

In this section, we are interested in preliminary results of representations theory that will

be useful in subsequent chapters.

Definition 2.3.1. A homomorphism ρ : G −→ GL(n,F) is said to be a matrix represen-

tation of G of degree n over the field F if G is a finite group and V is a vector space of

dimension n over the field F. The column space, Fn×1 of ρ is called module ρ representa-

tion. ρ is called an ordinary representation if the characteristic of F is zero and is called

a modular representation if it is a representation over a field of non-zero characteristic.

Definition 2.3.2. Let ρ : G −→ GL(n,F) be a representation of G over the field F. The

function χ : G→ F dened by χ(g) = trace(ρ(g)) is called the character of ρ.If ϕ : G→ F

is a function that is constant on conjugacy classes of G i.e., ϕ(g) = ϕ(αgα−1) for all,

α ∈ G we say that ϕ is a class function. It is easily shown that any character χ is a class

function.
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Definition 2.3.3. Two matrix representations ρ1 and ρ2 of G are equivalent representa-

tions for P ∈ GL(n,F) such that ρ2(g) = Pρ1(g)P−1 for all, g ∈ G.

Note: Whenever we consider a representation, it is only considered up to equivalence.

Definition 2.3.4. Let ρ : G → GL(n,F) be a representation of G on a vector space

V = Fn . Let W ⊆ V be a subspace of V of dimension m such that ρg(W ) ⊆ W for

all, g ∈ G, then the map G → GL(m,F) given by g → ρ(g)|W is a representation of G

called a sub representation of ρ. The subspace W is then said to be G−invariant or a

G−subspace. Every representation has {0} and V as G− invariant subspaces. These two

subspaces are called trivial or improper subspaces.

Definition 2.3.5. We define a linear representation V of G over F as a homomorphism.

∅ : G→ GL(V )

if F is a field of characteristic p , V is an F vector space and G is a finite group of order

n.

We say that the representation is faithful if ∅ is injective. Representations are similar or

equivalent if they correspond to isomorphic FG− modules. A module M is irreducible or

simple if the only submodules are M and 0. If not then M is reducible. M is decomposable

if there exist non-zero sub modules M1 and M2 such that M = M1⊕M2 . M is completely

reducible if it can be written as the direct sum of irreducible sub modules [ 21 ].

Definition 2.3.6. A representation ρ : G → GL(n,F) of G with representation module

V is called reducible if there exists a proper non-zero G−subspace U of V and it is said

to be irreducible if the only G−subspaces of V are the trivial ones.

The representation module V of an irreducible representation is called simple and the

ρ−invariant subspaces of a representation module V are called submodules of V . A
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simple subspace U of V is a submodule that is isomorphic to a simple representation

module and it is called a composition factor of V .

Definition 2.3.7. Let ρ : G → GL(V ) be a representation of G on a vector space V .

If there exists G−invariant subspaces U and W such that V = U ⊕W then ρ is called

decomposable. If no such subspaces exist it is called indecomposable.

Definition 2.3.8. A completely reducible representation ρ is a direct sum of irreducible

representations.

2.4 FG - modules

This section describes the relationship between representations of G and FG - modules.

Because of the one-to-one correspondence between them, we study representations via

module theory. The results from FG-modules carry over to representations.

ρ : FG→ EndF(V ) is a homomorphism, where FG is the group ring of G over F, restricts

to a representation of G. V can be regarded as a vector space over F and also as an FG

-module through the homomorphism ρ.

Definition 2.4.1. The group ring of G over F is the set of all formal sums of the form

Σg∈Gλgg, λg ∈ F

with componentwise addition and multiplication if G is a finite group and F is a field.

Theorem 2.4.2. There is a bijective relationship between finitely generated FG-modules

and representations of G on finite-dimensional F-vector spaces if F is a field and G is a

finite group.

Proof. See [ 35 ]

The definitions that follow have their equivalent stated in representation theory.
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Definition 2.4.3. A subspace W of V is called an FG-submodule of V if V itself is an

FG-module.

Definition 2.4.4. An FG-module V is called simple or irreducible if it has no other

submodules apart from the trivial submodules. A module which is not irreducible is called

reducible.

Definition 2.4.5. V is decomposable if it can be written as a direct sum of two FG-

submodules where V is an FG-module. V is completely reducible if it can be written as a

direct sum of irreducible submodules.

Definition 2.4.6. A function τ : V → W is said to be an FG-homomorphism if τ is a

linear transformation for any v ∈ V, g ∈ G, τ(gv) = gτ(v) i.e., if τ sends v to w then it

sends gv to gw.

Theorem 2.4.7. Two FG-modules are isomorphic if and only if they afford equivalent

representations.

Proof. See [ 35,Theorem 3.19 ]

Definition 2.4.8. A composition series for an FG-module V is a series of submodules

of the form

0 = V0 ⊂ V1 ⊂ ... ⊂ Vt = V

such that for each i ≥ 1 the factorVi−1/Vi is irreducible. The integer t is called the length

of the module V . If t is infinite then V is said not to have a composition series.
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Chapter 3

Construction of codes, designs and graphs from primitive groups

In this chapter, we discuss methods of construction of codes, designs and graphs from

primitive groups. Section 3.1 describes how to construct G-invariant codes. In section 3.2,

we describe how to construct codes from maximal submodules. Section 3.3 describes how

to construct designs from primitive groups. Finally section 3.4 describes how to construct

codes from combinatorial designs. From these four methods, we extract algorithms that

were implemented with the software package MAGMA [35]. For a more detailed account

and additional information the reader is advised to consult [1, 2, 3, 7, 9, 21 ].

3.1 Construction of G-invariant codes

It is required that all submodules of the permutation module are determined. As such,

the permutation module is decomposed into submodules. These constitutes the building

blocks for the construction of a lattice of submodules where possible, thereby attaining

an answer to the enumeration problem. With the characterization of these codes we get

the solution to the problem of classification of the codes.

Accordingly, Maschke’s Theorem gives a characterization of decomposition over a field

whose characteristic is 0 or relatively prime to the order of the group. Here, the permuta-

tion module is completely reducible and can be written as a direct sum of its irreducible

submodules. When the characteristic p of the field divides the order of the group i.e.,p||G|

,we apply Krull-Schmidt’s Theorem which shows that any module with finite length can

be written as a direct sum of indecomposable submodules, and this decomposition is
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unique up to isomorphism and the order of the summands [35]. In addition to Krull-

Schmidt theorem, we have the composition series of the module which provides a way

of breaking the module into simple components [35]. These concepts have been used to

develop different methods to construct submodules hence codes invariant under a group.

Lemma 3.1.1. The G− invariant submodules of F2G are the linear codes in F2G .

Proof. Proceeds from [35, Lemma 6.19 ]

Let G be a finite permutation group acting on a finite set Ω in the usual way.

Let V = FΩ be the F vector space with basis the elements of Ω.

Let ρ : G→ GL(V ) be a representation of G given by:

ρ(g)(x) = g(x) ∀g ∈ G and x ∈ V

We can consider V as the F2G− module obtained from ρ. Let S be as F2G− submodule

of the permutation module V.

By definition of G− invariant code,we have:

(
∑

g∈G αgg) .S ∈ S ∀
∑

g∈G αgg ∈ F2G and S ∈ S.

In particular,

g.S ∈ S ∀g ∈ G and S ∈ S

Thus ∀ g ∈ G S ∈ S, we obtain

ρ(g)(S) ∈ S or g(S) ∈ S and so S is G−invariant.
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Conversely, if S is G−invariant; then ∀g ∈ G and S ∈ S we have ρ(g)(S) ∈ S.

Therefore for scalars αg ∈ F2 we have:

∑
g∈G αgρ(g) (S) ∈ S by linearity.

This implies that

(
∑

g∈G αgg) .S ∈ S.

3.2 Construction of Codes from Maximal submodules

Our point of interest is finding all G−invariant codes from the primitive permutation

representations. We thus consider the permutation module obtained from the action of

the group on the cosets of its maximal subgroups and thus explore the corresponding

maximal submodules. Given a permutation group G on a finite set Ω and a finite field F

it is often of considerable interest to know the structure of the permutation module FΩ

(that is, the vector space over F with basis Ω considered as an FG module). In FΩ, the

G−invariant submodules equals to the linear codes[35].

For each primitive representation of a given permutation group G, we use atlas of finite

groups and Magma [9] to generate permutation module over F2 and subsequently sub-

modules directly. Each submodule constitutes in turn the binary code that is invariant

under G.

Let G be a finite group and H = Gα where α ∈ Ω its maximal subgroup and consider the

action of G on the set of cosets Ω = (G,G/Gα) where G/Gα = {gGα|g ∈ G}. We know
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that G acts transitively and primitively in a natural way by left multiplication on Ω and

the image of this action is a primitive permutation representation. The FΩ− permutation

module over Fq corresponds to this representation [35].

The Group G acts on given primitive permutation representations ( from the atlas )over

a finite field to base 2 to obtain permutation modules. We break down the permutation

modules into submodules which are themselves the dimensions of the G-invariant codes.

The G−invariant subspaces (i.e., submodules) of the permutation module give all the

p−ary codes invariant under G. The codes constructed using those methods are in general

subcodes[35].

3.3 Construction of symmetric 1-designs from primitive permutation groups

In this section, we describe how to construct symmetric 1-designs from primitive groups.

Theorem 3.3.1. Let G be a finite primitive permutation group acting on the set Ω of

size n . Let α ∈ Ω , and let 4 6= {α} be an orbit of the stabilizer Gα of α.

If β = {∆g : g ∈ G}

and, given δ ∈ ∆,

ε = {{α, δ}g: g ∈ G},

then β forms a symmetric 1− (n, |∆|, |∆|) design with n blocks, and ε forms the edge set

of a regular connected graph of valency |∆| , with G acting as an automorphism group on

each of these structures, primitive on vertices of the graph, and on points and blocks of

the design.

Proof. Proceeds from [21]. We have |G| = |∆G||G∆|, and clearly G∆ ⊇ Gα. Since G is

primitive on Ω, Gα is maximal in G, and thus G∆ = Gα and |∆G|= |β| = n. This proves
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that we have a 1− (n, |∆|, |∆|) design.

For the graph, we notice that the vertices adjacent to α are the vertices in ∆. Now as we

orbit these pairs under G, we get the nk ordered pairs, and thus nk/2 edges, where k = ∆.

Since the graph has G acting, it is clearly regular, and thus the valency is k as required,

i.e. the only vertices adjacent to α are those in the orbit ∆. The graph must be connected,

as a maximal connected component will form a block of imprimitivity, contradicting the

group’s primitive action. Now notice that an adjacency matrix for the graph is simply

an incidence matrix for the 1-design, so that the 1-design is necessarily symmetric. This

proves all our assertions.

Remark 3.3.2. Notice that by forming any union L, where {α} 6= L 6= Ω, of orbits of

the stabilizer of a point, including the orbit consisting of the single point, and orbit this

under the full group, we obtain a symmetric 1-design.

Lemma 3.3.3. A design can be obtained by orbiting a union of orbits of a point-stabilizer,

as described in Theorem 3.3.1 if the group G acts primitively on the points and the blocks

of a symmetric 1-design D.

Proof. See [21]

Theorem 3.3.4. The automorphism group of D contains G if D is a self-dual 1-design

obtained by taking all the images under G of a non-trivial orbit ∆ of the point stabilizer

in G′s primitive representations, and on which G acts primitively on points and blocks.

Proof. See [28].

Theorem 3.3.5. The automorphism group of D is contained in the automorphism group

of C if C is a linear code of length n of a symmetric 1 − (v, k, k) design D over a finite

field Fq.

Proof. See [28].
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3.4 Construction of codes from combinatorial designs

This section describes how to construct codes from combinatorial designs. Coding theory

has made many contributions to the theory of combinatorial designs. A code generated

by the incidence matrix of designs has been useful in either constructing new designs or

showing that certain designs do not exist, as it is for example the case of the projective

plane of order 10 [28]. Coding theory has also been used to extend designs [28].

Using the knowledge about codes and the existence of designs in codes can be useful for

decoding purposes. For example a binary vector x of weight w is said to determine the

block of w points corresponding to the positions where x has non-zero coordinates [28].

In such case we say that vectors of a fixed weight w in a binary code of length n hold a

t-design if the blocks determined by these vectors are the blocks of a t-design on n points.

This means that there must exist t and A so that every set of t coordinate positions

occurs as non-zero positions for exactly A vectors of weight w [28]. The knowledge of the

number of vectors of each weight existing in a code is crucial in determining whether or

not the supports of these vectors could form a design [28].

For D = (P,B, I) and any field F , we denote the vector space of functions from P to F

by Fp. For w ∈ Fp, the value of W at the points p is w(p) in F. The definitions below are

key to the construction of the codes.

Definition 3.4.1. The support set of a function w ∈ Fp is defined to be the subset of

points in P whose images under w are non-zero , that is, Supp(w) = p ∈ P |w(p) 6= 0.

The character function for a block B is denoted by V B and defined to be:

vb(p) = {1ifp ∈ B
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vb(p) = {0ifpnot ∈ B

The basis for this vector space is vp|p ∈ P

Definition 3.4.2. A code of a D = (P,B, I) design is contained in the space Fpq obtained

by the characteristic functions of the blocks of D and is denoted by Cq(D).

The incidence vector of Q is vQ if the point set of D is denoted by P and the block set

by B, and if Q is any subset of P . Thus CF(D) = 〈vB|B ∈ B〉 and is a subspace of Fp .

The dimension of the code Cp(D) of the design D over a prime field Fp is the rank of the

generating matrix of the code and is referred to as the p-rank of D [35].

NOTE: The minimum weight is less than the block size of D, but for the p-ary codes of

geometry designs, where p is the characteristic of the underlying field of the geometry, we

have equality by the work of Delsarte et al.

We are concerned with self-dual symmetric 1- (v, k, k) designs. In Theorem 3.3.1 we

give a method to construct such designs. These designs will result from the primitive

permutation representations of groups.
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Chapter 4

Internal structures of U3(4)

This chapter covers the internal structure of U3(4). The simple linear group U3(4) falls in

the unitary group of degree n, denoted by U(n) and is a sub group of the general linear

group GL(n,C). The unitary group U(n) is a real Lie group of dimension n2 [12]. The

general unitary group consists of all matrices A such that A?A is non-zero multiple of the

identity matrix, and is just the product of the unitary group with the group of all positive

multiples of the identity matrix. Since the determinant of a unitary matrix is a complex

number with norm 1, the determinant gives a group homomorphism

det: U(n) → U(1)

The Unitary group U(n) is non abelian for n > 1 [12]. There are twenty unitary groups

in the atlas of finite groups. For the background on the unitary groups see [16, 17, 20, 26].

This group has order 62, 400 = 26.3.52.13. From [11], U3(4) ∼= 2A2(4). There are two ways

in which G can be constructed :

1) GU3(4) ∼= 5×G : all 3× 3 matrices over F16 preserving a non singular Hermitian form;

2) PGU3(4) ∼= SU3(4) ∼= PSU3(4) ∼= G.

We discuss the three primitive representation of degrees 208, 416 and 1600. The primitive

representations are shown in table 4.1. The group U3(4) has four primitive groups of

degrees 65, 208, 416 and 1600 respectively (see [11] ). They are summarized in the Table

below: The first, second, third and fourth columns outline the degree of the primitive
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group, the structure of the maximal subgroups, the the number of orbits of the point-

stabilizer and the orbit length respectively.

Table 4.1: Maximal subgroups and representation of U3(4)

Degree Maximal Subgroup No.of orbits Length of orbits

65 22+4 : 15 2 1, 64
208 5×A5 5 1,12,60(2),75
416 52 : S3 9 1,15,25(4),75(2),150
1600 13 : 3 48 1,13(9),39(38)

These primitive representations may also be described in terms of the action of G on

geometrical objects called isotropic point, non-isotropic point, base and U1(64). When a

group G acts on given primitive permutation representation ( from the atlas )over a finite

field with 2 elements a permutation module is obtained.

In this chapter, we generate linear codes, designs and graphs from primitive representation

of degrees 208, 416 and 1600 and discuss their properties. For a primitive representation

of degree 65 , when the group G acts on the the maximal subgroup 22+4 : 15 over F2 ,

the permutation module formed generates trivial submodules and designs which are not

significant in this thesis.

4.1 Dimension representation of 208

A group U3(4) acts on a primitive permutation representation of degree 208 over a finite

field with 2 elements to obtain a permutation module. We generate the submodules from

the permutation module which represents the dimensions of the G-invariant codes.
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4.1.1 G-invariant codes

Let G be a primitive representation of U3(4) of degree 208. The group G acts on non-

isotropic point to generate the stabilizer 5×A5 . The stabilizer is a maximal subgroup of

degree 208 in G. The group G acts on this maximal subgroup over F2 to produce a permu-

tation module of size 208 contained in G. This permutation module is decomposed into

56 submodules. These submodules represent the dimensions of the linear binary codes of

permutation module of size 208 contained in G.

A complete list of U3(4)− invariant submodules of the permutation module F2Ω of degree

208 consists of 56 submodules whose dimensions are given in Table 4.2. From the table, m

represents the submodule dimension and # is the submodule number of each dimension.

Table 4.2: The number of Submodules of length 208 invariant under U3(4)

m # m # m # m #

0 1 67 1 118 3 144 1
1 1 77 1 119 1 153 1
16 1 78 3 127 1 154 3
17 1 79 1 128 1 155 1
53 1 80 1 129 1 191 1
54 3 81 1 130 3 192 1
55 1 89 1 131 1 207 1
64 1 90 3 141 1 208 1
65 2 91 1 142 3
66 3 117 1 143 2
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The number of submodules of dimension 208 −m is the same as the number of the di-

mension m. In other words, the dimension of the code equals to the dimension of its dual.

Using Magma, we decompose the permutation module into 56 non isomorphic submod-

ules. The following layers form the lattice diagram.

First layer: The 208-dimensional permutation module decomposes into three submod-

ules of dimensions 144,192 and 207.

Second layer: The 144 dimensional submodule decomposes into two submodules of di-

mension 128 and 143. The 192 dimensional submodule decomposes into two submodules

of dimension 128 and 191. The 207 dimensional submodule decomposes into two submod-

ules of dimension 143 and 191.

Third layer: The 128 dimensional submodule decomposes into a submodule of dimen-

sion 127. The 191 dimensional submodule decomposes into two submodules of dimension

127 and 155. The 143 dimensional submodule decomposes into a submodule of dimension

127. The 191 dimensional submodule decomposes into two submodules of dimension 127

and 155.

Fourth layer: The 127 dimensional submodule decomposes into a submodule of dimen-

sion 91 . The 155 dimensional submodule decomposes into five submodules of dimension

91, 143, 154, 154 and 154.

Fifth Layer: The 91 dimensional submodule decomposes into four submodules of dimen-

sion 79, 90, 90 and 90. The 143 dimensional submodule decomposes into five submodules

of dimension 79, 131, 142, 142 and 142. The 154 dimensional submodule decomposes into

three submodules of dimension 90, 142 and 153 in each case.

Sixth Layer: The 79 dimensional submodule decomposes into four submodules of dimen-

sion 67, 78, 78 and 78. The 90 dimensional submodule decomposes into two submodules

of dimension 78 and 89. The 131 dimensional submodule decomposes into five submod-
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ules of dimension 67, 119, 130, 130 and 130. The 142 dimensional submodule decomposes

into three submodules of dimension 67, 119 and 130 in each case. The 153 dimensional

submodule decomposes into two submodules of dimension 89 and 141.

Seventh Layer: The 67 dimensional submodule decomposes into four submodules of

dimension 55, 66, 66 and 66. The 78 dimensional submodule decomposes into two sub-

modules of dimension 66 and 77. The 89 dimensional submodule decomposes into one

submodule of dimension 77. The 119 dimensional submodule decomposes into four sub-

modules of dimension 55, 118, 118 and 118. The 130 dimensional submodule decomposes

into three submodules of dimension 66, 118 and 129. The 141 dimensional submodule

decomposes into two submodules of dimension 77 and 129.

Eighth Layer: The 55 dimensional submodule decomposes into a submodule of dimen-

sion 54. The 66 dimensional submodule decomposes into two submodules of dimension

54 and 65. The 77 dimensional submodule decomposes into submodule of dimension 65.

The 118 dimensional submodule decomposes into submodules of dimension 54 and 117.

The 129 dimensional submodule decomposes into submodules of dimension 65 and 117.

Ninth Layer: The 54 dimensional submodule decomposes into a submodule of dimension

53. The 65 dimensional submodule decomposes into a submodule of dimension 53. The

117 dimensional submodule decomposes into two submodules of dimension 53 and 81.

Tenth Layer: The 53 dimensional submodule decomposes into a submodule of dimen-

sion 17. The 81 dimensional submodule decomposes into three submodules of dimension

17, 65 and 80.

Eleventh Layer:The 17 dimensional submodule decomposes into two submodules of di-

mension 1 and 16. The 65 dimensional submodule decomposes into two submodules of

dimension 1 and 64. The 80 dimensional submodule decomposes into two submodules of

dimension 16 and 64.
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Twelfth Layer: The 1, 16 and 64 dimensional submodules decompose in each case to a

submodule of dimension 0.

Note: We have two non-isomorphic submodules of dimension 65 and two non-isomorphic

submodules of dimension 143 that decomposes into different submodules.

Lattice of submodules is shown below:

208

207 192 144

191
143

128

155 127

154 154 154 143 91

153 142 142 142
131 90 90 90

79

141
130 130 130 119 89 78 78 78

67

129
118 118 118 77 66 66 66

55

117
65 54 54

54

81 53

80
65

17

64
16

1

0

Figure 4.1: Lattice of submodules of length 208 invariant under U3(4)

Remark 4.1.1. There are 52 G-invariant codes.
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4.1.2 Binary codes

We list non trivial linear binary codes in Table 4.3. We name the linear binary codes as

C208,i with their respective duals as C⊥208,i. For some codes, we indicate minimum distance

where computations are possible.

Table 4.3: Non-trivial codes invariant under U3(4)

Code (Parameters) Code (Parameters) Code (Parameters)

C208,1 [208,16,72] C208,19 [208,79] C⊥208,16 [208,130]
C208,2 [208,17,72] C208,20 [208,80,12] C⊥208,15 [208,131]
C208,3 [208,53] C208,21 [208,81,12] C⊥208,14 [208,141]
C208,4 [208,54] C208,22 [208,89] C⊥208,13 [208,142]
C208,5 [208,54] C208,23 [208,90] C⊥208,12 [208,142]
C208,6 [208,54] C208,24 [208,90] C⊥208,11 [208,142]
C208,7 [208,55] C208,25 [208,90] C⊥208,10 [208,143]
C208,8 [208,64] C208,26 [208,91] C⊥208,9 [208,143]
C208,9 [208,65] C⊥208,26 [208,117] C⊥208,8 [208,144,10]
C208,10 [208,65] C⊥208,25 [208,118] C⊥208,7 [208,153]
C208,11 [208,66] C⊥208,24 [208,118] C⊥208,6 [208,154]
C208,12 [208,66] C⊥208,23 [208,118] C⊥208,5 [208,154]
C208,13 [208,66] C⊥208,22 [208,119] C⊥208,4 [208,154]
C208,14 [208,67] C⊥208,21 [208,127] C⊥208,3 [208,155]
C208,15 [208,77] C⊥208,20 [208,128] C⊥208,2 [208,191,4]
C208,16 [208,78] C⊥208,19 [208,129] C⊥208,1 [208,192,3]
C208,17 [208,78] C⊥208,18 [208,130]
C208,18 [208,78] C⊥208,17 [208,130]

We discuss the properties of these codes in Table 4.4.
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Table 4.4: Properties of codes from degree 208

Code Self
orthogo-
nal

Doubly
Even

Aut(C) Code Self
orthogo-
nal

Doubly
Even

Aut(C)

C208,1 Yes Yes 249600 C⊥208,1 No No 249,600
C208,2 Yes Yes 249600 C⊥208,2 No No 249,600
C208,3 Yes Yes - C⊥208,3 No No -
C208,4 Yes No - C⊥208,4 No No -
C208,5 Yes No - C⊥208,5 No No -
C208,6 Yes No - C⊥208,6 No No -
C208,7 No No - C⊥208,7 No No -
C208,8 No No - C⊥208,8 No No -
C208,9 No No - C⊥208,9 No No -
C208,10 Yes Yes - C⊥208,10 No No -
C208,11 Yes No - C⊥208,11 No No -
C208,12 Yes No - C⊥208,12 No No -
C208,13 Yes No - C⊥208,13 No No -
C208,14 No No - C⊥208,14 No No -
C208,15 No No - C⊥208,15 No No -
C208,16 No No - C⊥208,16 No No -
C208,17 No No - C⊥208,17 No No -
C208,18 No No - C⊥208,18 No No -
C208,19 No No - C⊥208,19 No No -
C208,20 No No - C⊥208,20 No No -
C208,21 No No - C⊥208,21 No No -
C208,22 No No - C⊥208,22 No No -
C208,23 No No - C⊥208,23 No No -
C208,24 No No - C⊥208,24 No No -
C208,25 No No - C⊥208,25 No No -
C208,26 No No - C⊥208,26 No No -

Note that the parameters of the above codes are given in table 4.3. From the table, there

are 10 G−invariant self orthogonal codes of length 208, 4 G−invariant doubly even codes

of length 208 and no self dual codes of length 208.

We give weight distributions of some codes and their duals where computations are pos-

sible and discuss their properties. We discuss codes C208,1 and C208,2 of parameters

[208, 16, 72]2 and [208, 17, 72]2 respectively. See Tables 4.5 and 4.6.
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Table 4.5: Weight distribution of C208,1 and C208,2

Weight [208, 16, 72]2 [208, 17, 72]2

0 1 1
72 416 416
80 0 195
88 3120 3328
96 12220 31356
104 30240 60480
112 19136 31356
120 208 3328
128 195 195
136 0 416
208 0 1

Table 4.6: Partial weight distribution of C⊥208,1 and C⊥208,2

Weight [208, 192, 3]2 [208, 191, 4]2 Weight [208, 192, 3]2 [208, 191, 4]2

0 1 1 10 511575290720 511575290720
3 416 0 200 1160074110 1160074110
4 4420 4420 201 47261760 0
5 68640 0 202 1820000 1820000
6 1820000 1820000 203 68640 0
7 47261760 0 204 4420 4420
8 1160074110 1160074110 205 416 0
9 25712797760 0 208 1 1

Our results from tables 4.5 and 4.6 are summarized in lemma 4.1.2 and proposition 4.1.3.

Using the same tables, we can assert the inclusions depicted in lemma 4.1.2. We note

that the two codes are related. We note that C208,1 is contained in C208,2 and C208,2 is

contained in C⊥208,1 . i.e C208,1 is subcode of these two codes and C⊥208,1 contains C208,1 and

C208,2. Also, C208,2 is contained in C⊥208,2.

Lemma 4.1.2.

(i) C208,1 ⊂ C208,2 ⊂ C⊥208,1

(ii) C208,2 ⊂ C⊥208,2
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Proposition 4.1.3.

Let C208,1 and C208,2 be non-trivial linear binary codes generated when the group G acts

on 208 primitive permutation representation over a finite field with 2 elements. We have:

(i.) C208,1 has the parameters [208, 16, 72]2. It has a minimum weight of 72. Its dual

C⊥208,1 has the parameters [208, 192, 3]2. It is self orthogonal and projective. C208,1 is

irreducible. Moreover, the Aut (C208,1) ∼= 22 : U3(4).

(ii.) C208,2 has parameters [208, 17, 72]2. It has a minimum weight of 72. Its dual C⊥208,2

has the parameters [208, 191, 4]2. It is self orthogonal and projective. C208,2 is de-

composable. Moreover, the Aut (C208,2) ∼= 22 : U3(4).

Proof. (i) The proof proceeds using weight distribution that is given in Tables 4.5 and

4.6. From the weight distribution, the codewords weight of C208,1 are divisible by 4, it

follows that C208,1 is a doubly even code. As such it is self orthogonal. The minimum

dual distance is 3. From the lattice structure, with reference to the twelfth layer, the

submodule of dimension 16 breaks into trivial submodules 0 and 1 thus irreducible. Since

C208,1 code is generated by 416 words of minimum weight 72 and U3(4) is a primitive group

of degree 416 , the automorphism group of the C208,1 of degree 416 is also primitive. From

Magma, we observe that |Aut(C208,1)| = 249,600 = 62400 × 2 × 2 and the composition

factors are Z2,Z2, U3(4). Since 22 : U3(4) = Aut(C208,1)

We have Aut(C208,1) ∼= 22 : U3(4)

(ii) Accordingly, from the weight distribution, the codewords weight of C208,2 are divisible

by 4, it follows that C208,2 is a doubly even code and hence self orthogonal. The mini-

mum dual distance is 4. The submodule of dimension 17 decomposes into submodules of
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dimensions 16 and 1 respectively.

Also as in (i), Since C208,2 code is generated by 416 words of minimum weight 72 and U3(4)

is a primitive group of degree 416 , the automorphism group of the C208,2 of degree 416

is also primitive. From Magma, we observe that |Aut(C208,2)| = 249,600 = 62400× 2× 2

and the composition factors are Z2,Z2, U3(4). Since 22 : U3(4) = Aut(C208,2)

we have Aut(C208,2) ∼= 22 : U3(4)

The codes C⊥208,1 and C⊥208,2 with parameters [208, 192, 3]2 and [208, 191, 4]2 respectively

can correct up to one error.

Proposition 4.1.4. The code C⊥208,1 and C⊥208,2 can correct up to one error.

Proof. By applying lemma 2.2.4, we obtain that (d− 1)/2 = 1; thus the result.

4.1.3 Strongly regular graph related to [208, 144, 10]2 code.

In this sub-section, we show that the code [208, 144, 10]2 is related to a strongly regular

graph in lemma 4.1.5.

Lemma 4.1.5. Γ(C⊥208,8) is a strongly regular (208,75,30,25) graph with spectrum [75]1,

[17.5]143 , [−12.5]64 .

Remark 4.1.6. We observe that the Eigen values of an adjacency matrix A of Γ(C⊥208,8)

are θ0 = 75,θ1 = 17.5 and θ2 = −12.5 and the corresponding multiplicities of θ0, θ1

and θ2 are f0 = 1, f1 = 143 and f2 = 64. The upper bound on 5-rank of Γ(C⊥208,8) is

rank5(Γ(C⊥208,8)) 6 min(f1 + 1; f2 + 1) = 65 since 2/θ1 − θ2.
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4.1.4 Designs in codewords of C208,i

We describe and construct designs from codes (see, e.g.,[15], theorem 4.1.9 ).

Theorem 4.1.7. The support of the codewords of a code C of non-zero weight forms a

t-design.

We use codewords of weight m to construct t-designs from [208, 16, 72]2 and [208, 17, 72]2.

In Tables 4.7 and 4.8, the first, second, third and fourth columns show the weight m, the

parameters of the designs-(Dwm) , the number of blocks of the designs and if a design

(Dwm) is primitive or not under the action of Aut(C) respectively.

Table 4.7: T-Designs from codewords of the code C208,1

m (Dwm) No.of blocks Primitive

72 1− (208, 72, 144) 416 yes
88 1− (208, 88, 1320) 3120 No
96 1− (208, 96, 5640) 12220 No
104 1− (208, 104, 15120) 30240 No
112 1− (208, 112, 10304) 19136 No
120 1− (208, 120, 120) 208 Yes
128 1− (208, 128, 120) 195 No

Table 4.8: T-Designs from codewords of the code C208,2

m (Dwm) No. of blocks Primitive

72 1− (208, 72, 144) 416 Yes
80 1− (208, 80, 75) 195 No
88 1− (208, 88, 1408) 3328 No
96 1− (208, 96, 14472) 31356 No
104 1− (208, 104, 30240) 60480 No
112 1− (208, 112, 16884) 31356 No
120 1− (208, 120, 1920) 3328 No
128 1− (208, 128, 120) 195 No
136 1− (208, 136, 272) 416 Yes
208 1− (208, 208, 1) 1 No
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.

Remark 4.1.8. For m = 72, 120, 136, the t-designs are primitive.

4.1.5 Symmetric 1-Designs

The Group G acts on a primitive permutation representation to obtain a maximal sub-

group which is a point stabilizer in G. From the orbits of the point stabilizer, we con-

struct symmetric 1- designs and consequently from the designs, we construct the desired

codes.(See theorem 3.3.1, lemma 3.3.3 and theorem 3.3.4 ).

We construct and examine all symmetric 1-designs invariant under U3(4) from orbits

of rank-5 permutation representation of degree 208. The primitive G-set of degree 208 is

denoted by Ω and Ω1, Ω2, Ω3, Ω4, Ω5 are the sub orbits of G on Ω with respect to the

stabilizer 5× A5 group with lengths 1, 12, 60, 60 and 75 respectively. .

In Table 4.9, the first, second and third columns show the symmetric 1-design, auto-

morphism of the design and the code derived from the design respectively. The same

parameters are repeated for columns four, five and six.
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Table 4.9: Symmetric 1-designs from primitive representation of degree 208

Design Aut(Dwm) Code Design Aut(Dwm) Code

1-(208,12,12) 22 : U3(4) [208, 80, 12]2 1-(208,136,136) 2 : U3(4) [208, 17, 72]2
1-(208,13,13) 22 : U3(4) [208, 144, 10]2 1-(208,196,196) 22 : U3(4) [208, 81, 12]2
1-(208,60,60) 2 : U3(4) [208, 80, 12]2 1-(208,88,88) 22 : U3(4) [208, 17, 72]2
1-(208,61,61) 2 : U3(4) [208, 144, 10]2 1-(208,121,121) 22 : U3(4) [208, 79]3
1-(208,73,73) 2 : U3(4) [208, 144]5 1-(208,148,148) 2 : U3(4) [208, 81, 12]2
1-(208,75,75) 22 : U3(4) [208, 144, 10]2 1-(208,207,207) 2 : A208 [208, 208, 1]2
1-(208,72,72) 2 : U3(4) [208, 16, 72]2 1-(208,132,132) 22 : U3(4) [208, 64]2
1-(208,76,76) 22 : U3(4) [208, 65]2 1-(208,147,147) 2 : U3(4) [208, 144, 10]2

1-(208,135,135) 2 : U3(4) [208, 143]5 1-(208,195,195) 22 : U3(4) [208, 144, 10]2
1-(208,87,87) 22 : U3(4) [208, 78]3 1-(208,133,133) 22 : U3(4) [208, 144, 10]2

1-(208,120,120) 22 : U3(4) [208, 16, 72]2

We summarize results of Table 4.9 as follows:

Lemma 4.1.9. Let Dk be symmetric 1-design, then:

(i) there are precisely 21 non isomorphic symmetric 1-designs.

(ii) For k = 12, 13, 75, 76, 87, 88, 120, 121, 132, 195, 196, 133, Aut(Dk) ∼= 22 : U3(4).

(iii) For k = 60, 61, 72, 73, 135, 136, 147, 148, Aut(Dk) ∼= 2 : U3(4).

(iv) For k = 207, Aut(Dk) ∼= S208.

4.2 Dimension representation of 416

A group U3(4) acts on a primitive permutation representation of degree 416 over a finite

field with 2 elements to obtain a permutation module. We generate the submodules from

the permutation module which represents the dimensions of the G-invariant codes.
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4.2.1 G-invariant codes

Let G be a primitive representation of U3(4) of degree 416. The group G acts on base to

generate the stabilizer 52 : S3. The stabilizer is a maximal subgroup of degree 416 in G.

The group G acts on this maximal subgroup over F2 to produce a permutation module of

size 416 contained in G. This permutation module is decomposed into 920 submodules.

These submodules represent the dimensions of the linear binary codes of permutation

module of size 416 contained in G.

Remark 4.2.1. The complete list of U3(4)− invariant submodules of the permutation

module F2Ω of degree 416 consists of 920 submodules whose dimensions are given in

Table 4.10. From the table, m represents the submodule dimension and # is the submodule

number of each dimension.
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Table 4.10: The number of submodules of length 416

m # m # m # m #

0 1 75 7 125 1 167 1
1 1 76 1 126 7 169 1
37 1 77 1 127 18 170 7
38 7 78 7 128 36 171 7
39 7 79 7 129 12 172 1
40 1 80 1 130 7 175 1
49 1 89 1 131 7 176 3
50 7 90 7 132 1 177 1
51 7 91 7 137 1 180 2
52 1 92 1 138 7 181 7
53 1 101 1 139 7 182 7
54 7 102 7 140 1 183 1
55 7 103 7 141 1 185 1
56 1 104 1 142 7 186 7
61 1 111 1 143 8 187 7
62 7 112 3 144 4 188 1
63 7 113 2 145 1 191 11
64 2 114 7 153 1 192 35
65 2 115 7 154 7 193 11
66 7 116 2 155 7 207 2
67 7 117 1 156 1 208 6
68 1 118 7 164 1
73 1 119 7 165 7
74 7 120 1 166 7

We classified these submodules using the partial submodule lattice as shown in figure 4.2.

The diagram shows the upper and lower sections of the lattice diagram. We were not able

to produce the whole lattice diagram due to many number of submodules.
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416

415 352

379 351

101 53 49 38 38 38 38 38 38 38

65 37

64 1

0

378 378 378 378 378 378 378 367 365 315

Figure 4.2: Partial Submodule lattice of degree 416

The submodules of dimension 416, 415, 1 and 0 are the dimensions of trivial codes.

Lemma 4.2.2. There are 916 G−invariant codes.

4.2.2 Symmetric 1-Designs

The Group G acts on a primitive permutation representation to obtain a maximal sub-

group which is a point stabilizer in G. From the orbits of the point stabilizer, we construct

symmetric 1- designs.(See theorem 3.3.1, lemma 3.3.3 and theorem 3.3.4 ).

We constructed and examined symmetric 1-designs invariant under U3(4) from orbits

of rank-9 permutation representation of degree 416. The primitive G-set of degree 416 is

denoted by Ω and Ω1, Ω2, Ω3, Ω4 , Ω5,Ω6, Ω7 , Ω8 , Ω9 are the sub orbits of G on Ω with

respect to the stabilizer 52 : S3 group with lengths 1, 15, 25(4), 75(2) and 150 respectively.
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Table 4.11: Symmetric 1-designs from primitive representation of degree 416

Design orbit length parameters Automorphism Group

D15 15 1-(416, 15, 15) 22 : U3(4).
D16 16 1-(416, 16, 16) 22 : U3(4)
D25 25 1-(416, 25, 25) U3(4)
D26 26 1-(416,26,26) U3(4)
D75 75 1-(416,75,75) 2 : U3(4)
D150 150 1-(416,150,150) 22 : U3(4)
D76 76 1-(416,76,76) 2 : U3(4)
D151 151 1-(416,151,151) 22 : U3(4)
D40 40 1-(416,40,40) U3(4)
D90 90 1-(416,90,90) 2 : U3(4)
D165 165 1-(416,165,165) 22 : U3(4)
D100 100 1-(416,100,100) U3(4)
D175 175 1-(416,175,175) U3(4)
D225 225 1-(416,225,225) 2 : U3(4)
D41 41 1-(416,41,41) U3(4)
D91 91 1-(416,91,91) 2:U3(4)
D166 166 1-(416,166,166) 22 : U3(4)
D101 101 1-(416,101,101) U3(4)
D176 176 1-(416,176,176) U3(4)
D226 226 1-(416,226,226) 2 : U3(4)
D115 115 1-(416,115,115) U3(4)
D190 190 1-(416,190,190) U3(4)
D250 250 1-(416,250,250) U3(4)
D240 240 1-(416,240,240) 2 : U3(4)
D116 116 1-(416,116,116) U3(4)
D191 191 1-(416,191,191) U3(4)
D265 265 1-(416,265,265) U3(4)
D251 251 1-(416,251,251) U3(4)
D241 241 1-(416,241,241) 2 : U3(4)

In Table 4.11 above, the first, second, third and fourth columns give the symmetric 1-

design, the orbit length, the the parameters of the designs the automorphism of the design

respectively. From the table, we come up with proposition 4.2.3.
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Proposition 4.2.3. Let L, M and N be the sets L =[15, 16, 150, 151, 165, 166], M =[75,

76, 90, 225, 91, 226, 240, 241] and N = [25, 26, 40, 100, 175, 41, 101, 176, 115, 190,

250, 116, 191, 265, 251]. Let β = {Mg: g ∈ G} and Dk = (Ω, β). Then it follows that:

i Dk is a primitive symmetric 1− (416, | M |, | M |) design.

ii If k ∈ L, then |Aut(Dk)| ∼= 22 : U3(4)

iii if k ∈ M, then |Aut(Dk)| ∼= 2 : U3(4)

iv if k ∈ N, then |Aut(Dk)| ∼= U3(4)

Proof

i The definition of Ω and β is inferred from theorem 3.3.1, and from this it is clear

that G ⊆ Aut(Dk).

ii First, we consider the case when k = 15. The composition factors of Aut(D15) are

Z2,Z2 and U3(4). Therefore it follows that the Aut(D15)= 22 : U3(4) .

An argument similar to that used in ii above could be used to prove iii and iv.

4.3 Dimension representation of 1600

The group G acts on U1(64) to generate the stabilizer 13 : 3. The stabilizer is a primitive

group of degree 1600 in G.

4.3.1 Symmetric 1-Designs

The Group G acts on a primitive permutation representation to obtain a maximal sub-

group which is a point stabilizer in G. From the orbits of the point stabilizer, we construct
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some symmetric 1- designs.(See theorem 3.3.1, lemma 3.3.3 and theorem 3.3.4 ).

We constructed and examined some symmetric 1-designs invariant under U3(4) from or-

bits of rank-48 permutation representation of degree 1600. The primitive G-set of degree

1600 is denoted by Ω and Ω1,Ω2, ...,Ω48, are the sub orbits of G on Ω with respect to the

stabilizer 13:3 group with lengths 1, 13(9) and 39(38) respectively. In Table 4.12, the first,

second, third and fourth columns give the symmetric 1-design, orbit length, parameters

of the designs and the automorphism of the design respectively.

Table 4.12: Symmetric 1-designs from primitive representation of degree 1600

Design orbit length parameters Automorphism Group

D13 13 1-(1600, 13, 13) U3(4)
D39 39 1-(1600, 39, 39) 2 : U3(4)
D14 14 1-(1600, 14, 14) U3(4)
D40 40 1-(1600,40,40) 2 : U3(4)
D52 52 1-(1600,52,52) U3(4)
D53 53 1-(1600,53,53) U3(4)

Proposition 4.3.1. Let L and M be the sets L=[13,14,52,53] and M = [39,40]. Let β =

{Mg: g ∈ G} and Dk = (Ω, β). It follows that:

i Dk is a primitive symmetric 1− (1600, | M |, | M |) design.

ii If k ∈ L, then |Aut(Dk)| ∼= U3(4)

iii if k ∈ M, then |Aut(Dk)| ∼= 2 : U3(4)

Proof

i The definition of Ω and β is inferred from theorem 3.3.1, and from this it is clear

that G ⊆ Aut(Dk).
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ii First, we consider the case when k = 13. The composition factors of Aut(D13) are

1 and U3(4). Therefore it follows that the Aut(D13)= U3(4) .

iii Here, we consider the case when k = 39. The composition factors of Aut(D39) are

Z2 and U3(4). Therefore it follows that the Aut(D39)= 2 : U3(4).

4.4 Conclusion

We constructed and enumerated all G-invariant codes from primitive permutation repre-

sentation of degrees 208 and 416 . We constructed some linear binary codes with minimum

distance where computations were possible. Properties of the codes where computations

were possible were studied. We found 10 self orthogonal codes of length 208, 4 doubly

even codes of length 208, two irreducible codes [208, 64] and [208 ,16, 72]. We also found

17 decomposable codes of dimensions 91, 90, 90, 90, 81, 80, 79, 78, 78, 78, 67, 66, 66,

66, 65, 55 and 17. There were 7 reducible codes of dimension 89, 77, 65, 54, 54 , 54

and 53 . There were also 6 non-isomorphic self dual [416, 208 ] codes of length 416. We

determined designs using weights of codewords of some linear binary codes of length 208.

The designs 1-(208, 72, 144), 1-(208, 120, 120), 1-(208, 72, 144 and 1-(208, 136, 272) were

primitive. Others were not primitive. Symmetric 1- designs were determined from the

primitive permutation representation of degrees 208, 416 and 1600. It was found that the

automorphism group was either 22 : U34 , U34 , 2 : U34 or 2 : A208.
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