

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLIMENTARY EXAMINATIONS

FOR THE DEGREE OF
B.SC (RENEWABLE ENERGY AND BIOFUELS TECHNOLOGY)

COURSE CODE:

PRD 372

COURSE TITLE:

THERMODYNAMICS III

DURATION: 2 HOURS

DATE:

12/10/2018

TIME: 8-10AM

INSTRUCTIONS TO CANDIDATES

(i) Answer Question 1 (Compulsory) and any other TWO questions

(ii) All symbols have their usual meaning

(iii) Use steam tables provided

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (Compulsory) - 30 Marks

a) Define the following terms:

	(i)	Stoichiometric combustion.	(2 Marks)
	(ii)	Ultimate analysis.	(2 Marks)
b) c)		Humidification. Sensible heating. os-Dalton law. e following terms as applied to air conditioning engineering:	(2 Marks) (2 Marks) (3 Marks)
C)	(i)		(2 Marks)
	(ii		(2 Marks)
d)	Explain th	ne purpose of the following design developments on an ICE:	
,	(i)	Eco-fan.	(2 Marks)
	(ii)	Replaceable wet sleeves and cylinders.	(2 Marks)
	(iii)	Cross-flow aspiration.	(3 Marks)
	(iv)	Piston spray cooling.	(2 Marks)
	(v)	Turbo-chargers.	(2 Marks)
e)	Give 2 con	mparisons between a 4-stroke cycle engine and a 2-stroke cycle engi	ne. (4 Marks)

QUESTION TWO (20 Marks)

The gas in an engine cylinder has a volumetric analysis of 12% CO_2 , 11.5% O_2 and 76.5% N_2 . The temperature at the beginning of expansion is 1000^{0} C, and the mixture expands reversibly through a volume ratio of 7 to 1 according to the law pv^{1.25}= constant. The average values of c_p (in kJ/kgK) for CO_2 , O_2 and N_2 are 1.271, 1.110 and 1.196 respectively.

If the mass of gas is 1kg, calculate the:

a) Work do	one.	(12 Marks)
b) Heat flo		(8 Marks)

OUESTION THREE (20 Marks)

A restaurant with a capacity of 100 persons is to be air-conditioned to 23°C DBT and 55% RH. The outside conditions are 30°C DBT and 70% RH. The quantity of air supplied is 0.5m³ per minute per person. The desired conditions are achieved by cooling, dehumidifying and then heating. The surface temperature of the heating coil is 35°C.

a) Show the processes on the psychrometric chart.

(6 Marks)

b) Determine the following:

(i) Capacity of the cooling coil in TR.

(7 Marks)

(ii) Capacity of heating coil.

(2 Marks)

(iii)Amount of water removed by the dehumidifier.

(3 Marks)

(iv)By-pass factor of the heating coil.

(2 Marks)

OUESTION FOUR (20 Marks)

A sample of coal has elements with the composition by mass: 88% C, 5% H_2 , 2.5% O_2 , 1% N_2 , 0.5% S, and 3% Ash.

a) Determine the stoichiometric A/F ratio for its combustion.

(10 Marks)

b) Find the actual A/F ratio if 25% excess air is supplied.

(2 Marks)

c) Do a volumetric analysis of combustion products in (b) on a dry basis.

(8 Marks)

QUESTION FIVE (20 Marks)

The rate of heat generation in a slab of thickness 160mm having a thermal conductivity of $180 \text{W/m}^0 \text{C}$ is $1.2 \times 10^6 \text{ W/m}^3$. If the temperature of each side of the solid is 120^0C , determine:

a) The temperature at the mid-plane and quarter planes.
 Take;

$$t = \frac{q_g}{2k}(L - x)x + t_w$$

(12 Marks)

b) Heat flow and temperature gradients at the mid-plane and quarter planes.

(8 Marks)