### KIBABII UNIVERSITY





## **UNIVERSITY EXAMINATIONS**

**MAIN EXAMS** 

2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION

**COURSE CODE: MBA 804** 

COURSE TITLE: QUANTATIVE ANALYSIS

DATE: 18/2018 TIME: 9,00 am

INSTRUCTIONS TO CANDIDATES Answer ANY THREE QUESTIONS

#### QUESTION ONE( 20 Marks)

#### Background information

- One of the ability tests was called the Clerical Speed and Accuracy test
- Each Question involved selecting a two-letter pair out of five two-letter pairs that corresponded to the two-letter pair in the question booklet
- The test was timed and split into two halves consisting of 100 questions each and lasting 3 minutes each

#### Research Questions

- Was average performance in the first part different to performance in the second part?
- Was performance in the first part related to performance in the second part?
- i) What are the variables in this study?
- ii) Are the variables nominal, ordinal, interval or ratio scales?
- iii) Which two statistical procedure could we use to test the two research questions?
- iv) What are the null hypotheses for the two research questions?
- v) What kind of reliability measure is research question 2?
- vi) What are your expectations?

The following was SPSS Repeated measures t-test output of this study

## Paired Samples Statistics

|           |                                              | Mean    | N   | Std. Deviation | Std. Error<br>Mean |
|-----------|----------------------------------------------|---------|-----|----------------|--------------------|
| Pair<br>1 | PSA: Clerical Speed<br>Adjusted Total Part 1 | 60.1478 | 115 | 12.23759       | 1.14116            |
|           | PSA: Clerical Speed<br>Adjusted Total Part 2 | 67.7043 | 115 | 13.16559       | 1.22770            |

#### Paired Samples Test

|           |                                                                                                | Paired Differences |         |                       |                                                 |          |        |     |                 |
|-----------|------------------------------------------------------------------------------------------------|--------------------|---------|-----------------------|-------------------------------------------------|----------|--------|-----|-----------------|
|           |                                                                                                | Mean               | Std.    | Std.<br>Error<br>Mean | 95% Confidence<br>Interval of the<br>Difference |          |        |     | Sig.<br>(2-tail |
|           |                                                                                                |                    |         |                       | Lower                                           | Upper    | t      | df  | ed)             |
| Pair<br>1 | PSA: Clerical Speed<br>Adjusted Total Part 1 -<br>PSA: Clerical Speed<br>Adjusted Total Part 2 | -7.557             | 6.22557 | .58054                | -8.70656                                        | -6.40648 | -13.02 | 114 | .000            |

- a) What is the difference between the two means?
- b) What is the Cohen's d of the difference taking the part 1 standard deviation?
- c) Which part did people do better on? Was the difference small, medium or large?
- d) Was the observed difference statistically significant? Write it out.
- e) What's the answer to the research question?
- f) How might you explain such a difference?
- g) What would have happened if we had computed a difference score between their part 1 and part 2 score for each individual and performed a one-sample t-test on this difference score?
- h) If we did adopt this approach of doing a one sample t-test on the difference score, what would be the population mean that we would test our sample mean against?

The following were SPSS Correlation Assumption Testing output





- 1. What are the two assumptions of correlation required in order to obtain accurate p-values for the significance test?
- 2. In the histogram, does performance on the two variables look normally distributed?
- 3. What is skewness / se skew for the two variables and does? Is it larger than 3 for either variable?

Statistics

|                   |         | PSA: Clerical<br>Speed<br>Adjusted<br>Total Part 2 | PSA: Clerical<br>Speed<br>Adjusted<br>Total Part 1 |  |
|-------------------|---------|----------------------------------------------------|----------------------------------------------------|--|
| N                 | Valid   | 115                                                | 115                                                |  |
|                   | Missing | 1                                                  | 1                                                  |  |
| Skewness          |         | .075                                               | .043                                               |  |
| Std. Error of Ske | ewness  | .226                                               | .226                                               |  |
| Kurtosis          |         | 368                                                | .775                                               |  |
| Std. Error of Kur | tosis   | .447                                               | .447                                               |  |

## **QUESTION TWO(20 Marks)**

(a) Because of inreasing cost increasing cost energy, the population within Maueni district seem to be shifting from the north to the south the transition matrix S describes the migration behaviour observed between the regions.

to north to south

$$S = \begin{pmatrix} 0.90 & 0.10 \\ 0.05 & 0.95 \end{pmatrix}$$
 from north from south

determine whether the populations will attain an equillibrium condition and if so, the population of the two regions.

(b) Matrix N below shows the number of items of type A, B, and C in warehouses Y and W. Matrix p shows the cost in pence per day of storing (S) and maintaining (M) one item each of A, B and C

A B C S M
$$N = \frac{Y}{W} \begin{pmatrix} 10 & 12 & 50 \\ 60 & 0 & 20 \end{pmatrix} \qquad P = \begin{bmatrix} A & 2 & 0.5 \\ 3 & 1.5 \\ C & 2 & 0.5 \end{bmatrix}$$

- i) Evaluate the matrix (N×P) and say what it represents.
- ii) Stock movement occurs as follows: At the start of the day 1:

Withdrawal of 2 type B from warehouse Y, 20 of type A from warehouse W.

At the start of day 2:

Delivery of 7 type B and 10 of type C to warehouse Y and 15 of type B to warehouse W.

Evaluate the total cost of storage and maintenance for days 1 and 2.

iii) Write down without evaluating a matrix expression which could be used to evaluate the storage and maintenance cost of items A, B and C for the period from day 1 to 4. Allow for the stock movements on days 1 and 2, as described in part (b). There were no stock movements on days 3 and 4.

# QUESTION THREE( 20 marks)

Describe how quadratic equations can be used in decision making. (3 mks) The demand for a commodity is given by p = 400 - q. The average total cost of producing the commodity is given by

$$ATC = \frac{1000}{q} + 100 - 5q + q^2$$

where p is the price in shillings and q is the quantity in kilograms.

## Required

What does  $\frac{1000}{q}$  in the ATC equation represent economically? (1 mark)

Determine the output that leads to maximum profit and the profit at the level of output. (9 marks)

Alpha industries sells two products, X and Y, in related markets, with demand functions given by:  $P_x - 13 + 2X + Y = 0$ 

$$P_v - 13 + X + 2Y = 0$$

The total cost, in shillings, is given by:

$$TC = X + Y$$

### Required:

Determine the price and the output for each good which will maximize profits. (7 marks)

# **QUESTION FOUR (20 Marks)**

An insurance company takes a keen interest in the age at which a person is insured. Consequently a survey conducted on prospective clients indicated that for clients having the same age the probability that they will be alive in 30 years time is  $\frac{2}{3}$ . This probability was established using the actuarial tables. If a sample of 5 people was insured now, find the probability of having the following possible outcomes in 30 years

- a) All are alive
- b) At least 3 are alive
- c) At most one is alive

- d) None is alive
- e) At least 1 is alive

# **QUESTION FIVE(20 Marks)**

A project has the following activities and costs. You are required to prepare the least cost schedules for all possible durations from  $normal\ time-normal\ cost$  to  $crash\ time-crash\ cost$ .

| Activity | Preceding<br>Activity | Duration | Crash time | Cost (Shs). | Crash cost | Cost slope |
|----------|-----------------------|----------|------------|-------------|------------|------------|
|          |                       | days     |            |             |            |            |
| A        | -                     | 4        | 3          | 360         | 420        | 60         |
| В        | -                     | 8        | 5          | 300         | 510        | 70         |
| С        | A                     | 5        | 3          | 170         | 270        | 50         |
| D        | A                     | 9        | 7          | 220         | 300        | 40         |
| E        | В,С                   | 5        | 3          | 200         | 360        | 80         |