



(Knowledge for Development)

## KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF MASTER OF SCIENCE IN
APPLIED MATHEMATICS

COURSE CODE:

**MAT 865 E** 

COURSE TITLE:

**FLUID MECHANICS II** 

DATE:

04/10/18

**TIME:** 8 AM -11 AM

## **INSTRUCTIONS TO CANDIDATES**

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

- (a) Precisely define
  - i) an eigen mode.

(2Mks)

ii) a plane wave.

(2Mks)

The three dimensional wave equation  $\frac{\partial^2 q}{\partial t^2} = c^2 \frac{\partial^2 q}{\partial x^2} + \frac{\partial^2 \epsilon}{\partial y^2} + \frac{\partial^2 \epsilon}{\partial z^2}$  can be used to describe the propagation of sound waves in a fluid. Show that the dispersion relation can be written compactly as  $\omega = c|k|$  (16Mks)

**OUESTION TWO (20MKS)** 

(a) Describe the wave equation  $\frac{\partial^2 u}{\partial t^2} = C^2 \nabla^2 u$ 

(10Mks)

- (b) Consider the gravitational force on a particle near the earth's surface,
  - (i) What is the force on this particle?
  - (ii) What are the surfaces of constant in this case?

(10Mks)

QUESTION THREE (20MKS)

(a) Define the laplacian in Cartesian co-ordinates

(3Mks)

(b) Distinguish between a field and a vector field using examples

(4Mks)

(c) Define the gradient of a function

(3Mks)

(b) From Hook's law show that the forces exerted on a mass M at any location x + h is

$$\frac{\partial^2 u}{\partial t^2} = (x, t) = \frac{KL^2}{M} \frac{\partial^2 u}{\partial x^2} (x, t)$$

(10Mks)

QUESTION FOUR (20 MKS)

- a) Consider the function  $(x, y, z) = \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}$
- i) Is it appropriate to calculate the divergence or gradient of this function? (5 mks) calculate whichever is appropriate
- ii) Calculate either the gradient or divergence of the new function (5mks)
- b) Find the divergence of  $\vec{F} = 3x^2y\hat{\imath} 3xy^2z\hat{\jmath} + z^3\hat{k}$  (10Mks)

## **QUESTION FIVE (20 MKS)**

a) For a beam of constant cross-section made from a linear elastic material with stiffness K given by K = EA/L

Show that the wave equation reduces to  $\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}(x,t)$  and identify the stress wave speed in a beam from the equation (10Mks)

(b) Using the Cartesian co-ordinate form of the divergence  $\nabla = \left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right)$ 

Compute  $B(r) = -\frac{y}{x^2 + y^2} \hat{X} + \frac{x}{x^2 + y^2} \hat{Y} x^2 + y^2 > 0$  (6Mks)

(c) Find the gradient if  $f = xy^2z^3$  (4Mks)