

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN

APPLIED MATHEMATICS

COURSE CODE:

MAT 858

COURSE TITLE:

NUMERICAL COMPUTATION FOR DIFFERENTIAL

EQUATIONS

DATE:

02/10/18

TIME: 9 AM -12 PM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Ouestion 1[20marks]

(a) Construct Crank-Nicolson implicit finite-difference scheme as applied to the second order linear parabolic partial differential equation

$$\frac{\partial u}{\partial t} = 2\psi \frac{\partial^2 u}{\partial x^2}, \qquad a$$

$$a \le x \le b$$
, $t > 0$ $\psi > 0$

subject to
$$u(0,t) = \alpha$$
, $u(1,t) = \phi$ $t > 0$

and
$$u(x,0) = \sin 4\pi x$$
 $a \le x \le b$.

[10 marks]

(b) Determine the stability condition for the Crank-Nicolson implicit finite-difference scheme [10marks] in part (a) above

Ouestion 2 [20 marks]

(a) Use a discriminant Δ theory to categorize; elliptic, parabolic and hyperbolic partial differential equations given below.

(i)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 40 \frac{\partial^2 u}{\partial y^2} = 120x$$
 (ii) $10 \frac{\partial u}{\partial t} = 3x^4 \frac{\partial^2 u}{\partial x^2}$ (iii) $\frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 100$ (iv) $\frac{\partial u}{\partial t} + 2 \frac{\partial^2 u}{\partial t \partial x} = \frac{\partial^2 u}{\partial x^2}$ [10 marks]

(b) Let y = y(x), u = u(x,t) be real valued smooth continuous differentiable functions

(i) Derive the finite difference approximations to the derivatives
$$\frac{dy}{dt}$$
, $\frac{\partial u}{\partial t}$, $\frac{\partial^2 u}{\partial x^2}$

(ii) Give the leading truncation error term in each case.

Question 3 [20marks]

(a) Construct an explicit finite-difference scheme as applied to the nonhomogenous parabolic equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 12, \qquad 0 \le x \le 1, \qquad 0 < t < 0.5$$

subject to
$$u(0,t) = u(1,t) = 0$$
 $0 < t$

and
$$u(x,0) = x(1-x) + \sin \pi x$$
 $0 < x < 10$.

[5 marks]

(b) Obtain a molecular formula for problem (a) above applied to the solution grid over region

$$W = \{(x,t): 0 \le x \le 10, 0 \le t\}$$
 with; $h = \Delta x = 2$; $k = \Delta t = 0.001$.

State the stability condition for the molecular formula employed. And hence compute, the numerical solutions [15 marks] U_{ij} ; for the three time levels j = 0, 1, 2.

Question 4 [20marks]

Given the wave equation

$$\frac{\partial^2 u}{\partial t^2} = 400 \frac{\partial^2 u}{\partial x^2},$$

$$0 < x < 1, \quad t > 0$$

subject to boundary conditions u(0,t) = u(1,t) = 0 for t > 0

and initial conditions $u(x,0) = \sin(2\pi x)$, $u_t(x,0) = 0$, 0 < x < 1, t = 0. $h = \Delta x$, t = 0.

(a) Construct the explicit finite difference scheme to it.

[8 marks]

(b) State the stability of the explicit finite difference scheme in part (i) above. [2 marks] (c) Compute the approximations $U_{i,j}$; j = 1 (first -time level), i = 0,1,2,3,4,5. to the exact solutions

 $u(x_i, t_j) \text{ using } h = \Delta x = 0.2, \ k = \Delta t = 0.05 \ h = \Delta x.$ [10 marks]

Question 5 [20marks]

On the square $D = \{(x, y) : 0 \le x \le 2, 0 \le y \le 2\}$ consider the Dirichlet problem for the Poisson's equation,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 10 \text{ in } D$$

$$u = g(x, y) \text{ on } S$$

(a) Use finite difference method with equal mesh spacing $h = \Delta x = \Delta y = \frac{1}{4}$, defined on D to discretize the Dirichlet problem, assuming. g(x, y) = 0 on S.

(b) Show that difference scheme takes the form $A\underline{U} = \underline{B} : A_{9\times 9} real$, symmetric matrix. Deduce that the numerically computed solution \underline{U} is unique [5 marks]

Question 6 [20marks]

Consider the two-dimensional diffusion equation

$$\frac{\partial u}{\partial t} = 40 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right], \qquad 0 \le x \le 4, \quad 0 \le y \le 4, \quad t > 0$$
subject to $u(0, y, t) = u(4, y, t) = u(x, 0, t) = u(x, 4, t) = 20$ for $t > 0$ and $u(x, y, 0) = x + y$ at $t = 0$.

(i) Construct alternate implicit finite difference schemes to it. [16 marks]

(ii) Determine the stability of the alternate implicit finite difference schemes in part (i) above. [4 marks]