

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 427

COURSE TITLE:

NUMERICAL ANALYSIS III

DATE:

03/10/18

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

OUESTION ONE (30 MARKS)

a. Obtain a general solution of the system of equations

$$\frac{du_1}{dt} = -5u_1 + 2u_2 + t$$

$$\frac{du_2}{dt} = 2u_1 - 2u_2 + e^{-t}$$
(11Mks)

b. Find the solution of the two dimensional heat conduction equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Subject to the initial conditions u = 0 on the boundaries conditions, $t \ge 0$ using the explicit method

$$u_{l,m}^{n+1} = (1 - 4\lambda)u_{l,m}^{n} + \lambda(u_{l-1,m}^{n} + u_{l+1,m}^{n} + u_{l,m-1}^{n} + u_{l,m+1}^{n})$$

with $h = \frac{1}{3}$ and $\lambda = \frac{1}{8}$. Integrate up to two time level.

(12 marks)

c. Convert the following 2nd order initial value problem into a system of 1st order initial value problem.

$$ty'' - y' + 4t^3y = 0, \ y(1) = 1, y'(1) = 2$$
 (7 marks)

QUESTION TWO (20 MARKS)

Evaluate the integral

$$I = \int_{-1}^{1} (1 - x^2)^{\frac{3}{2}} \cos x dx$$

Using

i. Gauss-Legendre three-point formulaii. Gauss-Chebyshev three-point formula

(10 marks)

(10 marks)

QUESTION THREE (20 MARKS)

Evaluate the integral

$$I = \int\limits_0^1 \frac{dx}{1 + x^2}$$

Using

i. Composite Trapezoidal rule

(10 marks)

ii. Composite Simpson's rule

(10 marks)

QUESTION FOUR (20 MARKS)

Solve the Initial value problem

$$\dot{u}=4tu^3, u(0)=1$$

With h=0.25 over the interval [0,1]. Use the forth order Classical Runge-Kutta method. (20 marks)

QUESTION FIVE (20 MARKS)

- a. Solve $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 by Picard's method, get the values of y(0.2) and y(0.4).

 Integrate to two time level (6 marks)
- b. Solve the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

Subject to the initial and boundary conditions:

$$u(x,0) = \sin \pi x, 0 \le x \le 1$$

$$u(0,t)=u(1,t)=0$$

Using the following methods:

i. The Schmist method

(7 marks)

ii. The Crank-Nicolson method

(7 marks)