

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 401

COURSE TITLE:

TOPOLOGY I

DATE:

11/09/17

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

- a) Define the following terms: interior point, closed set, boundary point, closure point and accumulation point . (5 marks)
- b) The intersection N ∩ M of any two neighbourhoods N and M of a point p is also a neighbourhood of p. Prove.

 (5 marks)
- c) The class $\tau_1 = \{X, \emptyset, \{a\} \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ is a topology on $X = \{a, b, c, d, e\}$. Find A', the derived set of $A = \{c, d, e\} \subset X$. (6 marks)
- d) Define a homeomorphism. (2 marks)
- e) Let $X = \{1, 2, 3\}$. Show that $\beta = \{\{1, 2\}, \{2, 3\}\}$ cannot be a base for any topology X. (6 marks)
- f) If $A \subset B$, then $\overline{A} \subset \overline{B}$. Prove. (6 marks)

QUESTION 2 (20 MARKS)

- a) Define a topological space. (3 marks)
- b) Let $\tau_1 = \{X, \emptyset, \{a\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}\}$ be topologies on $X = \{a, b, c\}$. Show whether the union $\tau_1 \cup \tau_2$ is a topology X or not? (9 marks)
- c) Prove that if $A \subset B$, then every limit point of A is a limit point B. (8 marks)

QUESTION 3 (20 MARKS)

- a) Define a Hausdorff space. (3 marks)
- b) Prove that all metric spaces are Hausdorff spaces. (10 marks)
- c) Consider the following topology on $X = \{a, b, c, d, e\}$: $\tau = \{X, \emptyset, \{a\}\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$. Determine the closure of the sets $\{a\}$, $\{b\}$ and $\{c, e\}$ (7 marks)

OUESTION 4 (20 MARKS)

- a) Define continuity of a function between topological spaces. (2 marks)
- b) Let X; Y;Z be topological spaces, and let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that the composition $g \circ f: X \to Z$ of the functions f and g is continuous. (9 marks)
- c) Let $\{\tau_i\}$ be a collection of topologies on a set X. If a function $f: X \to Y$ is continuous with respect to each τ_i , prove that f is continuous with respect to the intersection topology $\tau = \cap_i \tau_i$. (9 marks)

QUESTION 5 (20 MARKS)

a) Let $\tau_1 = \{X, \emptyset, \{a\} \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ be a topology on $X = \{a, b, c, d, e\}$.

Let $A = \{a, b, c\} \subset X$. Find

- i. Int (A), the interior of A. (4 marks)
- ii. Ent(A), the exterior of A. (4 marks)
- iii. $\partial(A)$, the boundary of A. (4 marks)
- b) Let A be a subset of a topological space X and \bar{A} be the closure of A. Show that $\bar{A} = Int(A) \cup \partial(A)$.

(8 marks)