(Knowledge for Development) KIBABII UNIVERSITY # UNIVERSITY EXAMINATIONS **2017/2018 ACADEMIC YEAR** ## FOURTH YEAR SECOND SEMESTER #### SPECIAL/SUPPLEMENTARY EXAMINATION #### FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION COURSE CODE: **MAT 401** COURSE TITLE: TOPOLOGY I DATE: 01/10/18 TIME: 11.30 AM -1.30 PM #### INSTRUCTIONS TO CANDIDATES Answer Question One and Any other TWO Questions TIME: 2 Hours This Paper Consists of 2 Printed Pages. Please Turn Over. | Determine B, the derived set of $B = \{b\} \subset X$. d) Define a homeomorphism. e) Let $X = \{1, 2, 3\}$. Show that $\beta = \{\{1, 2\}, \{2, 3\}\}$ cannot be a base for any topology X. | Jillarks | |---|---| | a) Define a topological space. b) The class τ = {X, Ø, {a} {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}} is a topology on X = {a, b, c, d, e}. i. List the closed subsets of X ii. Determine the closure of the sets {a}, {b} and {c, e}. iii. Which sets in (ii) are dense in X? | (3 marks) (2 marks) (6 marks) (1 mark) (8 marks) | | QUESTION 3 (20 MARKS) a) Define a Hausdorff space. b) Prove that all metric spaces are Hausdorff spaces. c) Let τ = {X, Ø, {a} {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}} be a topology on X = {a, b, c, d, e}. neighbourhood system of: The point e The point c d) A set G is open if and only if it is a neighbourhood of each of its points. Prove. | (3 marks)
(7 marks)
Find the
(2 marks)
(2 marks)
(6 marks) | | QUESTION 4 (20 MARKS) a) Define continuity of a function between topological spaces. b) Let X; Y; Z be topological spaces, and let f: X → Y and g: Y → Z be continuous functions. Proceedings of f: X → Z of the functions f and g is continuous. c) Let {τ_i} be a collection of topologies on a set X. If a function f: X → Y is continuous with respect prove that f is continuous with respect to the intersection topology τ = ∩_i τ_i. | () marks) | | QUESTION 5 (20 MARKS) a) Let $\tau_1 = \{X, \emptyset, \{a\} \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ be a topology on $X = \{a, b, c, d, e\}$. Let $A = \{a, b, c\} \subset X$. Find i. $Int(A)$, the interior of A . ii. $Ent(A)$, the exterior of A . iii. $\partial(A)$, the boundary of A . b) Let A be a subset of a topological space X and A be the closure of A . Show that A is A in the following function A . | (4 marks)
(4 marks)
(4 marks)
).
(8 marks) |