

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 401

COURSE TITLE:

TOPOLOGY I

DATE:

20/12/17

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

OUESTION 1 (30 MARKS) a) Define the following terms: discrete topology, trivial topology, boundary point and cofinite topology. (4 marks) b) Let X be a topological space. Prove that the empty set \emptyset and the whole space X are closed. (4 marks) c) The intersection N \cap M of any two neighbourhoods N and M of a point p is also a neighbourhood of p. Prove. (5 marks) d) Consider the following class of subsets of $X = \{a, b, c, d\}$. Determine whether or not $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d\}\}\$ is a topology on X. (4 marks) e) The class $\tau = \{X, \emptyset, \{a\} \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ is a topology on $X = \{a, b, c, d, e\}$. (5 marks) Find A', the derived set of $A = \{c, d, e\} \subset X$. (2 marks) Define a Hausdorff space. Let $X = \{1, 2, 3\}$. Show that $\beta = \{\{1, 2\}, \{2, 3\}\}$ cannot be a base for any topology X. (6 marks) **QUESTION 2 (20 MARKS)** (2 marks) Define a topological space. (7 marks) b) Prove that all metric spaces are Hausdorff spaces. (6 marks) c) Prove that if $A \subset B$, then every limit point of A is a limit point B. d) Let $\tau = \{X, \emptyset, \{1\}, \{1,2\}, \{1,3,4\}, \{1,2,3,4\}, \{1,2,5\}\}$ be a topology on $X = \{1,2,3,4,5\}$: Find the (5 marks) neighbourhood system of point 5. **QUESTION 3 (20 MARKS)** (2 marks) a) Define a homeomorphism. b) Consider the following topology on $X = \{1, 2, 3, 4, 5\}$: $\tau = \{X, \emptyset, \{1\}, \{1, 2\}, \{1, 3, 4\}, \{1, 2, 3, 4\}, \{1, 2, 5\}\}$. (2 marks) i. Determine the closed subsets of Xii. Determine the closure of the sets {1}, {2} and {3,5} (5 marks) (1 mark) iii. Which sets in (ii) are dense in X? c) Let $\tau_1 = \{X, \emptyset, \{a\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}\}$ be topologies on $X = \{a, b, c\}$. Show whether the union (5 marks) $\tau_1 \cup \tau_2$ is a topology *X* or not? (5 marks) d) If $A \subset B$, then $\overline{A} \subset \overline{B}$. Prove. **QUESTION 4 (20 MARKS)** (2 marks) a) Define continuity of a function between topological spaces. b) Let X; Y;Z be topological spaces, and let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that the (9 marks) composition $g \circ f: X \to Z$ of the functions f and g is continuous. c) Let $\{\tau_i\}$ be a collection of topologies on a set X. If a function $f: X \to Y$ is continuous with respect to each τ_i , (9 marks) prove that f is continuous with respect to the intersection topology $\tau = \bigcap_i \tau_i$. **QUESTION 5 (20 MARKS)** a) Let $\tau_1 = \{X, \emptyset, \{a\} \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ be a topology on $X = \{a, b, c, d, e\}$. Let $A = \{a, b, c\} \subset X$. Find (3 marks) τ_A , the relative topology on A. (3 marks) Int (A), the interior of A.

(3 marks)

(3 marks)

(8 marks)

ii.

iii.

iv.

Ent (A), the exterior of A.

 $\partial(A)$, the boundary of A.

b) Let A be a subset of a topological space X and \bar{A} be the closure of A. Show that $\bar{A} = Int(A) \cup \partial(A)$.