

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2016/2017 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 424

COURSE TITLE:

ODE III

DATE:

20/09/17

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) Consider the initial value problem

$$\dot{x} = f(t, x) \quad x(t_0) = x_0 \quad t \in I$$
 (1)

Where $f \in C(U, \mathbb{R}^{n+1})$ U an open subset of \mathbb{R}^{n+1} and I is in \mathbb{R} . Prove that (1) is equivalent to

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$$
 (2)

And x(t) is a solution of Equation (1) if and only if it is a solution of Equation (2) (4 Marks)

b) Prove the following; If g(t) is continuous real valued function that satisfies $g(t) \ge 0$ and

$$g(t) \le c + k \int_{t_0}^{t} g(s) ds \qquad t \in [0, a]$$

Where c and k are positive constants. It then follows that for all $t \in [0, a]$

$$g(t) \le ce^{kt}$$
 (4 Marks)

c) Define the following terms

(2 Marks)

- (i) Liapunov function
- (ii) Limit cycle
- d) Show that the system

$$\dot{x}_1 = -x_2 + x_1 (1 - (x_1^2 + x_2^2)^{\frac{1}{2}})$$

$$\dot{x}_2 = x_1 + x_2 (1 - (x_1^2 + x_2^2)^{\frac{1}{2}})$$

Has a limit cycle given by $x_1^2 + x_2^2 = 1$

(6 Marks)

e) Prove that every fundamental matrix solution X(t) of x = Ax has the form where

$$X(t) = P(t)e^{Bt}$$

Where P(t) = P(t + T) for all $t \in \mathbb{R}$, is a non-singular matrix and B is also an $n \times n$ constant matrix. (5 Marks)

- f) Solve the initial value problem $\dot{x} = \beta x$ $x(0) = x_0$ using Picards method of successive approximation. (4 Marks)
- g) Investigate the stability of the second order equation

$$\ddot{x} + \dot{x}^3 + x = 0$$

QUESTION TWO (20 MARKS)

Consider the differential equations that model the populations $x_1(t)$ and $x_2(t)$ at time $t \ge 0$ of two competing species

$$\dot{x}_1 = ax_1(1 - x_1) - bx_1x_2
\dot{x}_2 = cx_2(1 - x_2) - dx_1x_2$$
(5)

Let a = 1, b = 2, c = 1 and d = 3

- (i) On one phase plane sketch the isoclines of the differential equations (5) and determine all its equilibriums (4 Marks)
- (ii) Determine the type of stability of all equilibrium points in (i) above (6 Marks)
- (iii)Sketch the phase plane and clearly indicate the direction of the vector field defined by (5) (2 marks)
- (iv) State algebraically and sketch by shading appropriately the basin of attraction of each attracting fixed point. (4 Marks)
- (v) What are the likely populations of the species in the long term. State the reasons for the choice of your answer. (2 Marks)
- (vi) If a=3, b=2, c=4 and d=3. Show that the populations co-exist at some point $\overline{x}\left(\frac{2}{3}, \frac{1}{2}\right)$ (2 Marks)

QUESTION THREE (20 MARKS)

a) Prove that the function $V(y_1, y_2) = y_1^2 + y_1^2 y_2^2 + y_2^4$ $(y_1, y_2) \in \mathbb{R}^2$ Is a strict Liapunov function for the system

$$\dot{x}_1 = 1 - 3x_1 + 3x_1^2 + 2x_2^2 - x_1^3 - 2x_1x_2^2$$

$$\dot{x}_2 = x_2 - 2x_1x_2 + x_1^2x_2 - x_2^3$$

At fixed point (1,0)

(5 Marks)

b) Show that the phase portrait of

$$\ddot{x} - (1 - 3x^2 - 2\dot{x})\dot{x} + x = 0$$

Has a limit cycle

(5 Marks)

c) Define the following terms

(2 Marks)

- (i) Stability
- (ii) Equilibrium solution
- d) Find the derivative of the function

$$f(x) = \begin{pmatrix} x_1 - x_2^2 \\ -x_2 + x_1 x_2 \end{pmatrix} = \begin{pmatrix} f_1(x) \\ f_2(x) \end{pmatrix}$$

And evaluate it at the point $x_0 = (1, -1)^T$

(4 Marks)

e) Let E be an open subset of \mathbb{R}^2 and $f: E \to \mathbb{R}^n$. Proof that if $f \in C'(E)$, f is locally Lipschitz on E. (4 Marks)

QUESTION FOUR (20 MARKS)

For the system

$$\begin{aligned}
x &= y \\
\cdot \\
y &= x^2 - \mu
\end{aligned}$$

Where μ is a parameter.

a) Verify that this system is Hamiltonian and with the Hamiltonian

$$H(x, y) = \frac{y^2}{2} - \frac{x^3}{3} + \mu x$$
 (4 Marks)

- b) Show that for $\mu \ge 0$ the system has equilibrium points at $(x, y) = (\pm \sqrt{\mu}, 0)$ and no equilibrium points when $\mu < 0$ (so $\mu = 0$ is a bifurcation value of the parameter (3 Marks)
- c) Linearize the system at each of the equilibrium points and determine the behaviour of the solutions near the equilibrium points (4 Marks)
- d) Sketch the level curves H (and hence the phase plane of the system) for $\mu \in \{-1, -0.5, 0.5, 1\}$ (5 Marks)
- e) Describe the bifurcation that takes place at $\mu = 0$ (4 Marks)

QUESTION FIVE (20 MARKS)

Consider the nonlinear system

$$\dot{x} = -x + x(r^4 - 3r^2 + 1)$$

$$\dot{y} = x + y(r^4 - 3r^2 + 1)$$
(4 Marks)

Where $r^2 = x_1^2 + x_2^2$

a) Use the Poincare Bendixson theorem to show that (4) has a periodic orbit in the annular region $D_1 = \{x \in \mathbb{R}^2 \mid 1 < \mid x \mid < 2\}$ (8 Marks)

b) Show that the origin is unstable focus for this system and use the Poincare Bendixson Theorem to show that there is periodic orbit in the annular region

(6 Marks)

 $D_2 = \{x \in \mathbb{R}^2 \mid 1 < \mid x \mid < 2\}$ c) Find the unstable and stable limit cycles of this system

(6 Marks)