



(Knowledge for Development)

# **KIBABII UNIVERSITY**

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR SCIENCE

COURSE CODE: MAT 423

COURSE TITLE: ODE II

**DATE**: 19/09/17

TIME: 11.30 AM -1.30 PM

#### INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

### [Question One, 30mks]

- (a) (i) Differentiate between an ordinary point and a singular point of the linear second order equation y'' + p(x)y' + q(x)y = 0 [3mks]
  - (ii) Write the following fourth order differential equation as a system of first order, linear differential equations

$$y^{(4)} + 3y'' - \sin(t)y' + 8y = t^2;$$
  $y(0) = 1, y'(0) = 2,$   
 $y''(0) = 3, y'''(0) = 4$  [6mks]

(b) Write the following system in matrix form

$$x_1' = 4x_1 + 7x_2$$
$$x_2' = -2x_1 - 5x_2$$

[4mks]

- (c) how that  $y = c_1 \cos 4x$  and  $y = c_2 \sin 4x$ , where  $c_1$  and  $c_2$  are arbitrary constants, are solutions of the differential equation y'' + 16y = 0. [4mks]
- (d) Solve the following IVP

$$x'_1 = x_1 + 2x_2; \ x_1(0) = 0$$
  
 $x'_2 = 3x_1 + 2x_2; \ x_2(0) = -4$ 

[8mks]

(e) Prove that x = 0 is a regular singular point of the differential equation

$$x^2y'' + xy' + (x^2 - 4)y = 0$$

[5mks]

#### [Question Two, 20mks]

(a) Find the general solution to the following non- homogeneous system of differential equations using variation of parameter method.

$$\begin{array}{rcl} \frac{dx}{dt} & = & -3x + y + 3t \\ \frac{dy}{dt} & = & 2x - 4y + e^{-t} \end{array}$$

on the interval  $-\infty < t < \infty$ 

[8mks]

(b) Compute the eigenvalues and eigenvectors of the system

$$\frac{dx}{dt} = 3x - 13y$$

$$\frac{dy}{dt} = 5x + y$$

[4mks]

(c) Determine the general solution of the following differential equation given that it is satisfied by the function  $y = e^x$ 

$$xy'' - (x+1)y' + y = 0$$

[8mks]

# [Question Three, 20mks]

(a) Compute the particular solution vector for

$$\begin{array}{ll} \frac{dx}{dt} & = & 6x + y + 6t \\ \frac{dy}{dt} & = & 4x + 3y - 10t + 4 \end{array}$$

on the interval  $-\infty < t < \infty$ , hence find the general solution of the system. [9mks]

(b) Given that

$$\vec{X_1} = \begin{pmatrix} \cos t \\ -\frac{1}{2}\cos t + \frac{1}{2}\sin t \\ -\cos t - \sin t \end{pmatrix}$$

$$\vec{X_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t$$

$$\vec{X_3} = \begin{pmatrix} \sin t \\ -\frac{1}{2}\sin t - \frac{1}{2}\cos t \\ -\sin t + \cos t \end{pmatrix}$$

Show that  $\vec{X}_1, \vec{X}_2$  and  $\vec{X}_3$  form a fundamental set of solution on the interval  $(-\infty, \infty)$ , hence find the general solution of the system on the interval. [5mks]

(c) Solve the differential equation y' + y'' = x [6mks]

### [Question Four, 20mks]

(a) Find the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(-3)^n (x-5)^n}{n7^{n+1}}$$

[5mks]

- (b) Verify that the Taylor Series for the function  $f(x) = 3x^2 8x + 2$  about x = 2 is  $3x^2 8x + 2 = -2 + 4(x 2) + 3(x 2)^2$  [5mks]
- (c) Find a power series solution around  $x_0 = 0$  for the following differential equation.

$$y'' + y = 0$$

[10 mks]

# [Question Five, 20mks]

Consider the ordinary differential equation

$$4xy'' + 2y' + y = 0$$

for which x=0 is a regular singular point. Assuming a series solution of

$$y(x) = \sum_{n=0}^{\infty} a_n x^{r+n}$$

determine the values of r and  $a_n$  for  $n \geq 0$ .