

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 423

COURSE TITLE:

ODE II

DATE:

18/12/17

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 mks)

(a) Show that the solutions $\emptyset_1(x) = e^x \sin x$ and $\emptyset_2(x) = e^x \cos x$ to a differential equation are linearly independent. (4 mks)

(b) Linearize $y' = \frac{x}{y}$ at the point $y_0 = 1$. (4 mks)

(c) Use two methods to solve the equation $\frac{dx}{dt} = x + 1$; given x(0) = 0. (9 mks)

(d) Find the fundamental matrix for the system of equations given by $x' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} x$.

(10 mks)

(e) State: (i) the Existence Theorem (2 mks)

(ii) the Uniqueness Theorem. (1 mks)

QUESTION TWO(20 mks)

(a) The Bessel's equation of index k can be written as $y'' + \frac{1}{x}y' + \left(1 - \frac{k^2}{x^2}\right)y = 0$. When $k = \frac{1}{2}$ $y_1(x) = \frac{\sin x}{\sqrt{x}}$; x > 0 is a solution. If $y_2(x) = y_1(x) \int \frac{\exp(-\int a(x)dx)}{y_1^2(x)} dx$ where $a(x) = \frac{1}{x}$, show that $y_2(x) = -\frac{\cos x}{\sqrt{x}}$ is another solution. (15 mks)

Hence prove that the solutions $y_1(x)$ and $y_2(x)$ are linearly independent.

(b) Verify that $y_1(x)=e^{2x}$ is a solution to the equation y''-4y'+4y=0. Hence use the formula given in (a) above to find another linearly independent solution.

(5 mks)

QUESTION THREE (20 mks)

(a) By use of a suitable sketch diagram determine the stability of the function $f(x) = e^{-x} \sin x$ (7 mks)

(b) Linearize the following differential equations:

(i)
$$y' = y^3 + y$$
; $y_0 = 0$ (2 mks)

(ii)
$$y' = x^2 y^2$$
; $y_0 = -2$ (2 mks)

(iii)
$$y' = -\sin y$$
; $y_0 = \frac{\pi}{4}$ (2 mks)

(c) The velocity v=v(t) of a certain falling body subject to nonlinear velocity-dependent air resistance satisfies the equation $\frac{dv}{dt}=32-0.01v^2$

(i) Find the linearization of this differential equation near
$$v_0 = 100$$
. (3 mks)

(ii) Solve the linearized equation found in part (i) subject to the initial condition
$$v(t)=100.$$
 (4 mks)

QUESTION FOUR (20 mks)

(a) If $x(t)=c_1\begin{pmatrix}1\\2\end{pmatrix}e^t+c_2\begin{pmatrix}1\\1\end{pmatrix}e^{2t}$ is a general solution , find a particular solution given that x(0) = I(7 mks)

(b) Find the value of e^{At} when x' = Ax and $A = \begin{pmatrix} -3 & 2 \\ -4 & 3 \end{pmatrix}$ (13 mks)

QUESTION FIVE (20 mks)

(a) use Picard's method to approximate y when x=0.2, given that y=1 when x=0 and

$$\frac{dy}{dx} = x - y. \tag{10 mks}$$
 (b) Solve the system of linear differential equations given by:

$$2\frac{dx}{dt} + \frac{dy}{dt} - 4x - y = e^t$$

$$\frac{dx}{dt} + 3x + y = 0$$
(10 mks)