

(Knowledge for Development)

KIBABII UNIVERSITY

MAIN EXAMINATION

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS AND EDUCATION SCIENCE/ARTS (SB)

COURSE CODE: MAT 421

COURSE TITLE: PDE I

DATE: 07/12/18

TIME: 11.30-1.30PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Define the term partial differential equation (1mark)
- b) What is meant by the term order of a partial differential equation (1mark)
- c) Let u = u(x, y). Find the general solution to $u_x = 2x$, u(0, y) = lny (3marks)
- d) Using the initial conditions u(x,t) = t and $\frac{\partial u}{\partial x}(0,t) = e^{-t}$, find the exact solution to the pde (5mks)

$$\frac{\partial^2 u}{\partial x^2} = 6xe^{-t}$$

- e) Determine c_1 and c_2 so that $y(x) = c_1 e^{2x} + c_2 e^{2x} + 2 \sin x$ will satisfy the conditions y(0) = 0 and y'(0) = 1 (5 marks)
- f) Verify that $u(x,t) = (5x 6x^5 + x^9)t^6$ satisfies the **pde** (15 marks) $x^3t^2u_{xtt} 9x^2t^2u_{tt} = tu_{xxt} + 4u_{xx}$

QUESTION TWO (20 MARKS)

Consider the 1-D heat equation of the form

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$$

This is a function defined on the spatial domain $0 \le x \le 3$ and t > 0. Using separation of variables, find the general solution to the e, discussing the three distinct cases affecting the general solution and commending on the various outcomes of the solution (20marks)

QUESTION THREE (20 MARKS)

- a) Proof that D' Alembert's formular $u(x,t) = u_1(x,t) + u_2(x,t)$ where $u_1(x,t) = \phi(x+ct)$ and $u_2(x,t) = \psi(x-ct)$ and ϕ and ψ are arbitrary functions, is a solution to the 1-D wave equation $u_{tt}(x,t) = c^2 u_{xx}$ (15marks)
- b) Solve the wave equation below by D' Alambert's formular;

$$u_{tt}(x,t) = u_{xx}$$
, $(x,0) = \sin 5x$, $u_t(x,0) = \frac{1}{5}\cos x$ (5marks)

QUESTION FOUR (20 MARKS)

Let u(x, t) represent the temperature of a very thin rod of length π , which is placed on the interval $\{x/0 \le x \le \pi\}$, at position x and time t. The pde which governs the heat distribution is given by

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$$

where u, x, t and k are given proper units. Using the B.C $u(0, t) = u(\pi, t) = 0$ for $t \ge 0$ and the I.C u(x, 0) = 2sin4x - 11sin7x, for $0 \le x \le \pi$, find a solution u(x, t). (20marks)

QUESTION FIVE (20 MARKS)

Let u(x, t) represent the vertical displacement of a string of length π , which is placed on the interval $\{x/0 \le x \le \pi\}$, at position x and time t. The pde which governs the displacement is given by

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k^2} \frac{\partial^2 u}{\partial t^2}$$

where u, x, t and k are given proper units. Using the B.C $u(0, t) = u(\pi, t) = 0$ for $t \ge 0$ and the I.C u(x, 0) = 5sin3x - 6sin8x, for $0 \le x \le \pi$, and initial velocity $u_t(x, 0) = 0$ for $0 \le x \le \pi$, solve the equation for u(x, t). (20marks)