

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 421

COURSE TITLE:

PDE I

DATE:

15/12/17

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 Mks)

- (a) Define the terms:
 (i)linear, (ii) semi-linear, and (iii) quasi-linear partial differential equation of first order (3Mks)
- (b) Obtain the solution of the first order linear partial differential equation $y\frac{\partial u}{\partial x} x\frac{\partial u}{\partial y} + xu = 0 \text{ satisfying the condition } u = y \text{ when } x^2 + 2y^2 = 4$ (8Mks)
- (c) If Z = Z(x, y) is a function of x and y, eliminate the arbitrary function f from the equation (i) $Z = x + f(x^2 y^2)$ (2Mks)

(ii)
$$Z = e^{\frac{y}{x}} f(xy)$$
 (3Mks)

- (d) Distinguish Pfaffian differential form and a Pfaffian differential equation (2Mks)
- (e) Obtain the integral curves of the equations $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)z}$ (6Mks)
- (f) Use the Jacobi's method to find the complete integral of the first order partial differential equation $p^2 q^2 = z$ where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ (6Mks)

QUESTION TWO (20 Mks)

Given a surface by the parametric equations

$$x = u + v$$

$$y = u - v$$

$$z = 4uv$$

Where *u* and *v* are real values

- (a) Show that the above equation represents a surface of jacobians. (10Mks)
- (b) Find (a) above by eliminating u and v (10Mks)

QUESTION THREE(20 Mks)

- (a) Verify that the Pfaffian differential equation $yzdx + (x^2y xz)dy + (x^2z xy)dz = 0 \text{ is integrable.}$ (8Mks)
- (b) Find the general solution and obtain the particular solution satisfying the condition: z = y when x = 1 (5Mks)
- Use Chapit's method of solving non-linear first order partial differential equations to find the complete integral of the equation $Z^2 = pqxy$ (7Mks)

QUESTION FOUR (20 Mks)

- Using the fact that coefficients of the differential equation $(y^2 + z^2)dx + xydy + xzdz = 0$ are homogeneous functions in x, y and z of the same degree obtain the general solution. (6Mks)
- (b) Show that the first order partial differential equation xp yq = x, $x^2p + q = xz$, are compatible. (7Mk)
- (c) Hence obtain the general solution of the given simultaneous equations and find the solution passing through the point (1,1,3) (7Mks)

QUESTION FIVE (20 Mks)

(a) Consider the Lagrange's partial differential equation

$$x(y-z)p + y(z-x)q = z(x-y)dz$$
 where $p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$ write the corresponding

Lagrange's auxiliary equations and hence find its integral surface that passes through the curve z = 1, y = x. (13Mks)

(b) Find the equation of the tangent plane to the hyperboloid $4x^2 - 9y^2 - 9z^2 - 36 = 0$ at the point $(3\sqrt{3}, 2, 2)$ (7Mks)