

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT314

COURSE TITLE:

ODE

DATE: 28/09/17

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours *

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) The slope at any point of a curve is 2x + 3y. If the curve passes through the origin, determine its equation. (5 Marks)
- b) Given that y = x is a solution of $x \frac{d^2 y}{dx^2} + x \frac{dy}{dx} y = 0$ at $x \ne 0$. Find the general solution

of
$$x \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x$$
 (4 Marks)

- c) Prove that $L[Sin(at)] = \frac{a}{s^2 a^2}$ (4 Marks)
- d) By use of separable variables, solve first order differential equation (1-x)dy + (1-y)dx = 0 (4 Marks)
- e) Solve a homogeneous equation $xdy ydx = \sqrt{x^2 + y^2} dx$. (4 Marks)
- f) Solve a differential equation below which is reducible homogeneous form.

$$\frac{dy}{dx} = \frac{x - y + 3}{2x - 2y + 5} \tag{6 Marks}$$

- g) Define the following terms as used in ordinary differential equations. (3 Marks)
 - (i) Operator
 - (ii) Partial Differential Equation
 - (iii) Linear Differential Equation.

QUESTION TWO (20 MARKS)

- a) Solve $(D^3 D^2 6D)y = x^2 + 1$ (7 Marks)
- b) Apply partial differential method to solve $z^2(p^2x^2 + x^2) = 1$ (8 Marks)
- c) Evaluate the functional $I = \int_0^1 \left[y^2 + \left(\frac{dy}{dx} \right)^2 \right] dx$ by calculus variations along the paths (i) $y = x^2$ (ii) $y = (e^x 1)(e 1)$ (5 Marks)

QUESTION THREE (20 MARKS)

- a) Find the Laplace transforms of the following functions.
 - (i) $f(x) = e^{ax}$ (5 Marks)
 - (ii) f(x) = Sinh(ax) (7 Marks)
- b) Solve the function $y = yp^2 + 2px$ given that the function is solvable for y only and

$$y = f(x, p), f(x, p, c) = 0, f(x, y, p) = 0, p = \frac{dy}{dx} = Q\left(x, p\frac{dp}{dx}\right)$$
 (5 Marks)

- c) How long does it take for a given amount of money to double at 6% interest rate per annum compounded
 - (i) Annually. (1 Marks)
 - (ii) Continuously. (2 Marks)

QUESTION FOUR (20 MARKS)

- a) Solve a homogeneous differential equation $(D^3 + 1)y = Cos2x$ when Q(x) = bSin(ax)...or...bCos(nx) (10 Marks)
- b) Using Multiplier method, solve $\frac{dx}{x(y^2 z^2)} = \frac{dy}{-y(z^2 + x^2)} = \frac{dz}{z(x^2 + y^2)}$ (10 Marks)

QUESTION FIVE (20 MARKS)

- a) Compound Z is formed when two chemicals X and Y are combined. The resulting reaction between the two chemicals is such that each gram of X, 4g of Y is used. It is observed that 30 grams of compound Z is formed in 10 Minutes. Determine the amount of Z at any time if the rate of reaction is proportional to the amount of X and Y remaining when initially there were 50 grams of X and 32 grams of Y. How much compound Z is present after 15 Minutes. Interpret the solution as $t \to \infty$ (10 Marks)
- b) Find the Inverse transforms of $\frac{5s+2}{(s-2)^2+13}$ (4 Marks)
- c) In each of the following types of equation write two examples. (6 Marks)
 - (i) First Order Differential Equations
 - (ii) Second Degree Differential Equations
 - (iii) Ordinary Differential Equations