



(Knowledge for Development)

## KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

**2017/2018 ACADEMIC YEAR** 

THIRD YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

**MAT314** 

COURSE TITLE:

ODE

DATE:

18/10/2018

TIME: 11.30 AM- 1.30 PM

### **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

## **QUESTION ONE (30 MARKS)**

- a) Define the following terms as used in ordinary differential equations. (3 Marks)
  - (i) Operator
  - (ii) Partial Differential Equation
  - (iii) Linear Differential Equation.
- b) The slope at any point of a curve is 3x + 2y. If the curve passes through the origin, determine its equation. (5 Marks)
- c) Given that y = x is a solution of  $x \frac{d^2 y}{dx^2} + x \frac{dy}{dx} y = 0$  at  $x \ne 0$ . Find the general solution

of 
$$x\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = x$$
 (4 Marks)

- d) Solve a homogeneous equation  $xdy ydx = \sqrt{x^2 + y^2} dx$ . (4 Marks)
- e) Prove that  $L[Sin(at)] = \frac{a}{s^2 a^2}$  (4 Marks)
- f) By use of separable variables, solve first order differential equation (1-x)dy + (1-y)dx = 0 (4 Marks)
- g) Solve a differential equation below which is reducible homogeneous form.

$$\frac{dy}{dx} = \frac{x - y + 3}{2x - 2y + 5} \tag{6 Marks}$$

# **QUESTION TWO (20 MARKS)**

- a) Compound Z is formed when two chemicals X and Y are combined. The resulting reaction between the two chemicals is such that each gram of X, 6g of Y is used. It is observed that  $40 \, grams$  of compound Z is formed in  $15 \, Minutes$ . Determine the amount of Z at any time if the rate of reaction is proportional to the amount of X and Y remaining when initially there were  $60 \, grams$  of X and  $42 \, grams$  of Y. How much compound Z is present after  $15 \, Minutes$ . Interpret the solution as  $t \to \infty$  (10 Marks)
- b) Find the Inverse transforms of  $\frac{5s+2}{(s-2)^2+13}$  (4 Marks)
- c) In each of the following types of equation write two examples. (6 Marks)
  - (i) First Order Differential Equations
  - (ii) Second Degree Differential Equations
  - (iii) Ordinary Differential Equations

#### **QUESTION THREE (20 MARKS)**

a) Find the Laplace transforms of the following functions.

(i) 
$$f(x) = e^{ax}$$
 (5 Marks)

(ii) 
$$f(x) = Sinh(ax)$$
 (7 Marks)

b) Solve the function  $y = yp^2 + 2px$  given that the function is solvable for y only and

$$y = f(x, p), f(x, p, c) = 0, f(x, y, p) = 0, p = \frac{dy}{dx} = Q\left(x, p\frac{dp}{dx}\right)$$
 (5 Marks)

- c) How long does it take for a given amount of money to double at 6% interest rate per annum compounded
  - (i) Annually. (1 Marks)
  - (ii) Continuously. (2 Marks)

## **QUESTION FOUR (20 MARKS)**

- a) Solve a homogeneous differential equation  $(D^3 + 1)y = \sin 2x$  when Q(x) = bSin(ax)...or...bCos(nx) (10 Marks)
- b) Using Multiplier method, solve  $\frac{dx}{x(y^2 z^2)} = \frac{dy}{-y(z^2 + x^2)} = \frac{dz}{z(x^2 + y^2)}$  (10 Marks)

## **QUESTION FIVE (20 MARKS)**

a) Solve 
$$(D^3 - D^2 - 6D)y = x^2 + 1$$
 (7 Marks)

b) Apply partial differential method to solve 
$$z^2(p^2x^2 + x^2) = 1$$
 (8 Marks)

c) Evaluate the functional  $I = \int_0^1 \left[ y^2 + \left( \frac{dy}{dx} \right)^2 \right] dx$  by calculus variations along the paths (i)  $y = x^2$  (ii)  $y = (e^x - 1)(e - 1)$  (5 Marks)