

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR SCIENCE

COURSE CODE:

MAT 405

COURSE TITLE: MEASURE THEORY

DATE:

13/09/17

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages, Please Turn Over.

QUESTION 1 COMPULSORY (30 MKS)

a). Define area as the measure of the interval on $\mathbb R$ given that a < x < b and c < x < d with a , b , c , $d \in \mathbb R$ (4 mks)

b) Prove that
$$\mu^*(\{x\}) = 0$$
 (5 mks)

c) State two examples of $\sigma - algebra$ (2 mks)

d) Define a measurable space (4 mks)

e) Show that the outer measure is count ably sub additive (15 mks)

QUESTION 2: (20 mks)

- a) Let A_1, A_2, \ldots, A_n be a pairwise disjoint collection of members of lebesque measurable sets. Then for any $X \subseteq \mathbb{R}$ prove that $\mu^*(X \cap \bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu^*(X \cap A_i)$ (10 mks)
- b) Let (X, \mathfrak{X}, μ) be a measure space $f, g \in M^+(X, \mathfrak{X})$ and c a non-negative real constant, show that $\int (f+g) d\mu = \int f d\mu + \int g d\mu$ (10 mks)

QUESTION 3: (20 mks)

- a) Show that a non-degenerate interval of $\mathbb R$ is uncountable (8 mks)
- b) State the three types of measures of the intervals over Randillustrate them on separate diagrams (6mks)
- c) Let (X,\mathfrak{X}) be a measurable space and $f:X\to\mathbb{R}$, $g:X\to\mathbb{R}$ functions. Prove that g+f is $\mathfrak{X}-$ measurable function for all $x\in X$. (6 mks)

QUESTION 4: (20 mks)

a) Given that a borel set $B(\mathbb{R})$ is a $\sigma-algebra$ of subset of \mathbb{R} and by definition of topological space state the structure of Borel set if a, $b \in \mathbb{R}$ (12mks)

b)Let $\{\mathfrak{X}_{\alpha}:\alpha\in\mathbb{N}\}$ be a family of $\sigma-algebra$ of subsets of X. Prove that the set \cap \mathfrak{X}_{α} such that α is from the index set is also a $\sigma-algebra$ of subset of X.

(8 mks)

QUESTION 5: (20 mks)

a) Prove the translation invariance property of the outer measure

(5 maks)

b) If $B,A\subseteq\mathbb{R}$ and that $A\subseteq B$, with the $\mu^*(A)=0$, show that

$$\mu^*(B) \leq \mu^*(A \cup B)$$

(5 mks)

c) c) If $E\subseteq\mathbb{R}$ and $\mu^*(E)=0$,then prove that $E\in\mathcal{M}$ and also if $F\subset E$ then $F\in\mathcal{M}$ (lebesque measurable) (10 mks)