

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER

FOR THE DEGREE OF BACHELOR EDUCATION AND BACHELOR OF SCIENCE

MAIN EXAMINATION

(MATHEMATICS)

COURSE CODE:

MAT 405

COURSE TITLE:

MEASURE THEORY

DATE:

22/12/17

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Amy other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1: (30MKS) COMPULSORY

- b) Describe the three types of measure over \mathbb{R} with the help of the diagram (6mks)
- c) Given non-empty set \emptyset and that the set $\emptyset \in \mathcal{M}$. (Lebesque measurable) Then prove that $\emptyset^c \in \mathcal{M}$ (5 mks)
- d) Let A,B be subsets of $\mathbb R$ and $\mu^*(B)=0$ Prove that $\mu^*(A\cup B)=\mu^*(A)$ (5 mks)
- e) Let Let (X,\mathfrak{X},μ) be a measurable space $A,B\in\mathfrak{X}$ and $A\subseteq B$ and $f,g\in M^+(X,\mathfrak{X})$ and $f\leq g$ Then show that $\int f\ d\mu \leq \int g\ d\mu$ (4 mks)
- f) Show that $\mu^*(\{x\}) = 0$ where $x \in \mathbb{R}$ (4 mks)

QUESTION 2:(20 mks)

a) Let A_1, A_2, \ldots, A_n be subsets of $\mathbb R$. Prove that

 $\mu^* \left(\bigcup_{j=1}^n A_j \right) \leq \sum_{j=1}^n \mu^* (A_j)$ i.e the outer measure is finitely sub-additive

(10 mks)

b) Let (X, \mathfrak{X}, μ) be a measurable space $f, g \in M^+(X, \mathfrak{X})$ and c a non-negative real constant, show that $\int cf \ d\mu = c \int f \ d\mu$

(10 mks)

QUESTION 3: (20 mks)

a) Define the term Lebesque measurable set

(4 mks)

- b) If $E\subseteq\mathbb{R}$ and $\mu^*(E)=0$,
 - i) then prove that $E \in \mathcal{M}$
 - ii) further if $F \subset E$ then prove that $F \in \mathcal{M}$ (10 mks)
- c) If $B,A\subseteq\mathbb{R}$ and that $B\supseteq A$, show that

$$\mu^*(B) \geq \mu^*(A)$$

(6 mks)

QUESTION 4: (20 mks)

- b) Let (X,\mathfrak{X}) be a measurable space and $f\colon X\to\mathbb{R}^*$ function be $\mathfrak{X}-$ measurable Prove that cf(x) is $\mathfrak{X}-$ measurable function for all $x\in X$ and $c\in\mathbb{R}$

QUESTION 5: (20 mks)

For the interval I of \mathbb{R} prove that the outer measure of the interval is equal to the length of the interval i.e. $\mu^*(I) = l(I)$ (20 mks)