

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAT 402

COURSE TITLE: TOPOLOGY II

DATE:

20/09/17

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

- a) The class $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}\$ is a topology on $X = \{a, b, c, d, e\}$. Show that X is (5 marks) disconnected.
- (7 marks) b) Let F be a closed subset of a compact space X. Then F is also compact. Prove.
- c) Let $\tau = \{X, \emptyset, \{1\} \{2,3\}\}$ be a topology on $X = \{1,2,3\}$. Show that X is a regular space. (4 marks)
- d) Show that every subspace of a second countable space is second countable. (7 marks)
- e) Let τ be the cofinite topology on any set X. Show that (X, τ) is separable. (7 marks)

QUESTION 2 (20 MARKS)

- (2 marks) a) Define separated sets
- b) Consider the following intervals on the real line \mathbb{R} : A = (0, 1), B = (1, 2) and C = [2, 3). Show that
 - (3 marks) A and B are separated.
 - B and C are not separated (3 marks) ii.
- (6 marks) c) Show that if A and B are non empty separated sets, then $A \cup B$ is disconnected.
- d) Let $G \cup H$ be a disconnection of A. Show that $A \cap G$ and $A \cap H$ are separated sets. (6 marks)

QUESTION 3 (20 MARKS)

- a) Prove that a topological space X is a T_1 space if and only if every singleton subset is closed. (10 marks)
- b) Consider the topology $\tau = \{X, \emptyset, \{a\}\} \{b\}, \{a, b\} \}$ on $X = \{a, b, c\}$. Show whether or not (X, τ) is:
 - (5 marks) A normal space
 - (2 marks) T_1 – space ii.
 - (3 marks) A regular space

QUESTION 4 (20 MARKS)

- a) Let A be any subset of a second countable space X. If G is an open cover of A, then G is reducible to a countable cover. Prove.
- b) The class $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ is a topology on $X = \{a, b, c, d, e\}$. Show that X is (5 marks) disconnected.
- c) Let $B_p = \{G_1, G_2, ...\}$ be a countable local base at $p \in X$. Show that:
 - There exists a nested local base at p. 5 marks)
 - If X satisfies the first axiom of countability then there exists a nested local base at every $p \in X$. (4 marks) ii.

QUESTION 5 (20 MARKS)

- (2 marks) a) Define compact sets.
- b) A continuous image of a sequentially compact set is sequentially compact. Prove. (6 marks)
- (6 marks) c) Show that if τ is a cofinite topology on any set X then (X, τ) is a compact space.
- d) The open interval A = (0, 1) on the real line \mathbb{R} with the usual topology is not sequentially compact. Show. (6 marks)

2