

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 402

COURSE TITLE:

TOPOLOGY II

DATE:

30/07/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - (i). A connected space

(2 mks)

(ii). A Convex set

(2mks)

- (iii). A second countable space (2 mks)
- (iv). A Haursdorff space (2 mks)
- (v). A T_1 space

(2 mks)

t

- b) Let X = [0,2], show that we cannot have a separation of X.(3 mks)
- c) Show that the image of a compact set under a continuous map is compact. (4 mks)
- d) Show that a subspace of a second countable space is second countable. (4 mks)
- e) Let $X = \{a, b\}$. Form a topological space on X hence show that the formed topology is a topology and but $not T_1$.(5mks)
- f) Let X be a regular space and one-point sets be closed in X. Show that if given a point $x \in X$ and a neighbourhood U of x, there is a neighbourhood V of x such that $\overline{V} \subset U$. (4mks)

QUESTION TWO (20 MARKS)

- a) Define the term a compact space, hence show that space of real numbers, \mathbb{R} , is not compact. (4 mks)
- b) Show that the set $X = \{x, y, z, k\}$ with a topology $\tau = \{\phi, \{z\}, \{y, z\}, X\}$ is not a Hausdorffspace. (3 mks)
- c) Let $f: X \to Y$ be a continuous function from a topological spaces, X, to another, Y. Show that its image is connected given that X is connected. (5 mks)
- d) State and prove the intermediate value theorem

(8 mks)

QUESTION THREE (20 MARKS)

a) (i). What is a linear continuum?

(2mks)

- (ii). Prove that a linear continuum L, in the order topology, as well as its intervals and rays are connected. (11mks)
- b) Prove that every metrizable space is normal.

(7mks)

QUESTION FOUR (20 MARKS)

- a) Show that the real line $\mathbb R$ is locally compact. (4 mks)
- b) Prove the claim that the interval (0,1) on the real line is sequentially compact. (5 mks)
- c) Let $X \times Y$ be a product topological space and π_1, π_2 be projections on X and Y respectively be defined as $\pi_1(x,y) = x$ and $\pi_2(x,y) = y$ for $x \in X$ and $y \in Y$. Let $A \subset X \times Y$ be square $A = \{(x,y) : 0 \le x \le a, 0 \le y \le b \text{ for } a,b \in \mathbb{R}\}$. Show that A is a linear continuum.
- d) Prove that the real line, \mathbb{R} , together with the usual matrix d=|x-y| for $x,y\in\mathbb{R}$ is a Hausdorff space. (5 mks)

QUESTION FIVE (20 MARKS)

- a) Let X be a topological space. Define a relation $x \sim y$ on X if there is a connected subspace of X containing both x and y. Show that \sim is an equivalence relation. (5 mks)
- b) Prove that every open covering of a space X with a countable basis contains a countable sub collection covering X. (5 mks)
- c) Let $\{A_{\alpha}\}$, $\alpha \in I$ be a collection of connected subspaces with a common point. Show that $\bigcup_{\alpha \in I} A_{\alpha}$ is connected. (5mks)
- d) When is a function said to be uniformly continuous on a metric space (X, d) where d is a metric on X. Provide an example of uniformly continuous function and one that is not is continuous but not uniformly continuous on a given interval. (5 mks)