

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MA

MAT 308

COURSE TITLE:

RING THEORY

DATE:

17/10/18

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question 1 (30 marks)

- a) Explain the meaning of the following terms as used in ring theory.
 - i) Euclidean Domain
 - ii) Integral domain
 - iii) Principal Ideal Domain
 - iv) A Boolean ring

(8 marks)

- b) Determine whether or not the following polynomials are irreducible over Z_5
 - i) $f(x) = x^3 + 2x^2 3x + 4$

(6 mks)

ii) $g(x) = x^2 + 3x + 4$

(6 mks)

- c) i) Show that a Boolean ring \mathcal{B} , $x^2 = x$ for each $x \in \mathcal{B}$ implies 2x = 0 (4 mks)
- d) ii) Let x be a non zero element of a ring R with unity. Suppose there exists a unique $y \in R$ such that xyz = x, show that xy = 1 = yx. (6 mks)

Question two

- a) Let *R* be a commutative ring with identity.
 - Show that if e is an idempotent element of R, then 1 e is also idempotent.

(6 mks)

ii) Show that if e is an idempotent element of R then $R \cong Re \oplus R(1 - e)$ (14 mks)

Question three

- a) Let R be the ring of real numbers with unity, and let R[x] be the polynomial ring over R. Let $J = (x^2 + 1)$ be the ideal in R[x] consisting of the multiples of $x^2 + 1$. Show that the quotient R[x]/I is the field of complex numbers. (12 mks)
- b) Let $f: R \to S$ be a homomorphism of the ring R into a ring S. Show that the set $\{f(a) | a \in R\}$ is a subring of R (8 mks)

Question four

- a) Find q(r) and r(x) in $Z_5[x]$ if $g(x) = 2x^3 + 3x^2 + 4x + 1$ is divided by f(x) = 3x + 1. (8 mks)
- b) Determine the idempotents, nilpotent elements and the units of the ring of integers modulo $10 (Z_{10})$ (6 mks)
- c) Find all cyclic subgroups of the group of units of the ring of integers modulo 24 (Z_{24})

(6 mks)

Question five

- a) Show that the ring of Gaussian integers $R = \{m + n\sqrt{-1} \mid m, n \in Z\}$ is a Euclidean ring if we set $\phi(m + n\sqrt{-1}) = m^2 + n^2$ (12 mks)
- b) Let A and B be ideals in R such that $B \subseteq A$. Show that $R / A \cong (R / B) / (A / B)$ (8 mks)