

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 307

COURSE TITLE:

NUMBER THEORY

DATE:

13/09/17

TIME: 8 AM -10 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

INSTRUCTIONS: Answer question one and any other two questions

- 1. a) State any five simple properties of Congruences. (5 marks)
 - b) Prove that if a, b and n are integers then (a, b) = (a + nb, b) (5 marks)
 - c) Find integers x, y which satisfy the linear diophanite equation 23x + 29y = 1 (5 marks)
 - d) Prove the following result of Euler $641|(2^{32} + 1)|$ (8 marks)
 - e) State and prove the Euclid's theorem. (7 marks)
- 2. a) Prove that the product of n consecutive integers is divisible by n! (6 marks)
 - b) Prove that $n^5 5n^3 + 4n$ is always divisible by 120. (4 marks)
 - c) Show that the greatest common divisor of any two integers a, b can be written as a linear combination of a and b (10 marks)
- 3. a) Prove that every year, including any leap year, has at least one Friday on 13th.
 (10 marks)
 - b) How many positive integers \leq 1260 are relatively prime to 1260? (5 marks)
 - c) Show that there are infinitely many primes of the form 4n + 3. (5 marks)
- 4. a) Define the term Divisibility and prove that if 7|(3x + 2) then $7|(15x^2 11x 14)$ (5 marks)
 - b) Find all solutions for the congruence $5x \equiv 3 \mod 7$ (5 marks)

- c) Define arithmetic functions f and give, with description, any five examples of arithmetic functions. (10 marks).
- 5. a) Show that Z_p is a ring. (5 marks)
 - b) Show that Z_6 forms a complete set of Residues modulo 6. (5 marks)
 - c) State and prove the Euclid's lemma of unique factorization. (5 marks)
 - d) State and prove the Fermat theorems. (5 marks)