



(Knowledge for Development)

## **KIBABII UNIVERSITY**

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

(MATHEMATICS)

COURSE CODE:

**MAT 306** 

COURSE TITLE:

**GROUP THEORY** 

DATE:

31/07/18

TIME: 2 PM -4 PM

# **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

### **QUESTION ONE: COMPULSORY (30 MARKS)**

| a) Define, using relevant examples, the following terms                |               |
|------------------------------------------------------------------------|---------------|
| i) Conjugacy class                                                     | (2 marks)     |
| ii) Class equation                                                     | (2 marks)     |
| iii) Abelian group                                                     | (2 marks)     |
| iv) P-subgroup                                                         | (2 marks)     |
| b) Show how the class equation of the Quaternion group is determ       | nined.        |
|                                                                        | (8 marks)     |
| c) State the four Sylow theorems.                                      | (4 marks)     |
| d) Determine the number of abelian groups of order 72 and show         | them clearly  |
| in a table.                                                            | (10 marks)    |
|                                                                        | •             |
| QUESTION TWO (20 MARKS)                                                |               |
| a) Identify all the p-Sylow subgroups of $Z/(12)$                      | (10 1 -)      |
| b) Show that every group of order $p^2$ is abelian where $p$ is prime. | (10 marks)    |
| by state and every group of order p is abelian where p is prime.       | (10 marks)    |
|                                                                        |               |
| QUESTION THREE (20 MARKS)                                              |               |
| a) Identify the elements of 2-Sylow subgroup of $SL_2(\mathbb{Z}/(3))$ | (10 marks)    |
| b) State and prove the Jordan-Holder theorem.                          | (10 marks)    |
|                                                                        | (20 11111110) |
| QUESTION FOUR (20 MARKS)                                               |               |

#### QL

a) Identify the conjugate classes of the Dihedral group  $\,D_8\,$  , the set of the symmetries of a square, hence write its class equation.

b) Show a finite group G has a p-Sylow subgroup for every prime p and any psubgroup of G lies in a p-Sylow subgroup of G. (10 marks)

#### **QUESTION FIVE (20 MARKS)**

a) Show that for each prime  $\,p\,$  , the p-Sylow subgroups of  $\,G\,$  are conjugate.

(10 marks)

b) Let  $G = S_3$ , permutation group on three elements, identify its class equation from the Conjugacy class. (10 marks)