

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 305

COURSE TITLE:

GROUP THEORY I

DATE: 12/09/17

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

Define the following a) (2marks) Normal subgroup (2marks) ii. Quotient group (2marks) iii. Conjugate (2marks) The center of the group iv. (2marks) The centralizer V. (3marks) If G is a group and $a \in G$, show that a * a = a implies a = eb) Define the following c) (2marks) i. Identity (2marks) ii. Inverse If S is a subset of the group G, show that S is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$, then $ab^{-1} \in S$ (5marks) e) Define the following (2marks) i. A subgroup (2marks) ii. Proper subgroup (1mark) iii. Trivial subgroup (2marks) Cyclic subgroup iv.

QUESTION TWO (20MARKS)

a) Define the following

i. Right coset (2marks)

ii. The order of the group (2marks)

iii. Lagranges theorem (2marks)

b) Let S be a subgroup of the group G and let $a, b \in G$. Show that Sa = Sb if and only if $ab^{-1} \in S$ (6marks)

c) Show that cosets are either identical or disjoint

(6marks)

d) If |G| = P is prime. Show that G is cyclic

(2marks)

QUESTION THREE (20MARKS)

a) Show that every subgroup of a cyclic group is cyclic

(6marks)

b) Define the Euler Phi Function

(2marks)

c) Let G be a cyclic group of order n generated by a. show that G has $\emptyset(n)$

generators

(4marks)

d) Compute the following with the Euler phi function

i. Ø(40)

(3marks)

ii. Ø(300)

(3marks)

iii. $\emptyset(6^3)$

(3marks)

QUESTION FOUR (20MARKS)

- a) Define the following
 - i. Permutation(3marks)
 - ii. Group action (3marks)
 - iii. Orbit(2marks)
 - iv. Stabilizer (3marks)
- b) Show that every permutation can be written as the product of transposition(3marks)
- c) Let G act on Ω . If $x_{i} \in \Omega$, show that $|x^{G}| = \frac{|G|}{|G_{x}|}$

(6marks)

QUESTION FIVE (20MARKS)

- a) Show that the subgroup N of G is a normal subgroup if and only if $g^{-1}Ng \subseteq N$ for all $g \in G$ (5marks)
- b) Show that if N is a normal subgroup of G. Then the coset of N form a group. If G is finite this group has order |G:N| (5marks)
- c) Define the following

i. Binary operation

(1mark)

ii. A group

(3marks)

d) Write down the multiplication table for the set of matrices

 $G = \left\{ a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, b = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, d = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$

(3marks)

e) Write down the multiplication table for the set of complex numbers

 $G = \{1, i, -1, -1\}$ under multiplication

(3marks)