

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 305

COURSE TITLE:

GROUP THEORY I

DATE:

02/10/18

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

Question 1 (30 marks)

a). Define the following	
i) Subgroup	(3marks)
ii) Isomorphic groups	(2marks)
iii) the center of a group	(3marks)
iv). Order of a group	(2marks)

- b). Let S be a subgroup of the group G and let $a, b \in G$. Show that Sa = Sb if and only if $ab^{-1} \in S$ (5marks)
- c). Show that every subgroup of a cyclic group is cyclic. (10marks)
- d). Show that the set of complex numbers $G = \{I, I, -I, -I\}$ under multiplication is a group (5marks)

Question 2 (20marks)

a). Define the following

i). Group	(3marks)
ii). Subgroup generated by X	(2marks)
iii). The Kernel and the Image	(3marks)
iv). Symmetric group	(2marks)
b). If S is a subset of the group G , show that S is a subgroup of G if and only and whenever $a, b \in S$, then $ab^{-1} \in S$	if S is nonempty (5marks)
c). Show that cosets are either identical or disjoint	(5marks).

Question 3 (20marks)

a). Show that every permutation can be written as the product of transposition	(3marks)
--	----------

- b). If S is a subset of the finite group G, show that S is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$, then $ab \in S$ (10marks)
- c). Let $G = \langle a \rangle$ have order . Show that for each K dividing n, G has a unique subgroup of order K namely $\langle a^{n/k} \rangle$. (7marks)

Question 4 (20 marks)

a). Define the following

i). Orbit (2marks)

ii). Stabilizer (2marks)

iii). Graph (2marks)

iv). Centralizer in a group (2marks)

b). Let $s_4 = sym(1,2,3,4)$ show that s_4 acts on the set of ordered parts (6marks)

c). Let x be an element of the finite group G. Show that the number of conjugates of x is the index of $C_{G(X)}$ in G. That is, $|K(x)| = [G:C_{G(X)}]$ (7marks)

Question 5 (20marks)

a). Define the following

i). Transposition (1mark)

ii). Even permutation (2marks)

iii). Normal subgroup (2marks)

iv). Quotient group (2marks)

b). State the Division Algorithm Lemma (3marks)

c). Let $\pi = B_1 B_2, \dots, B_n = y_1 y_2, \dots, y_m$ be two factorizations of the permutation π where the B_i and Y_j are transpositions. Show that either n and m are both even or they are both odd. (4marks)

d). Show that the subgroup N of G is a normal subgroup of G if and only if $g^{-1}Ng \subseteq N$ for all $g \in G$ (6marks)