

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

MATHEMATICS

COURSE CODE: MAT 304

COURSE TITLE: COMPLEX ANALYSIS I

DATE:

22/09/17

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

INSTRUCTIONS: Answer question one and any other two

QUESTION ONE (Compulsory)

- a) Evaluate $(-1+i)^{1/3}$ and represent first three solutions graphically (8 marks)
- b) State the De Moivre's theorem and use it to solve $Z^5 = 3 4i$ (5 marks)
- c) Show that an analytic function is also harmonic. (5 marks)
- d) Describe the singularities of the function $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ (5 marks)
- e) Evaluate $\int \bar{z}dz$ from z=0 to z=4+2i along the curve C given by $z=t^2+it$ (7 marks)

QUESTION TWO

- a) State the five theorems of continuity. (5 marks)
- b) Prove that

i)
$$e^{z_1}e^{z_2} = e^{z_1+z_2}$$
 (4 marks)

ii)
$$|e^z| = e^x$$
 (3 marks)

iii)
$$e^{z+2\pi k} = e^z, k = 0, \pm 1, \pm 2, ...$$
 (3 marks)

c) Prove that
$$\lim_{z \to i} \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i} = 4 + 4i$$
 (5 marks)

QUESTION THREE

a) Evaluate the following using the theorems of limits

i)
$$\lim_{z \to 1+i} z^2 - 5z + 10$$
 (3 marks)

ii)
$$\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2-2z+4}$$
 (3 marks)

iii)
$$\lim_{z \to 2e^{\pi i/3}} \frac{z^3 + 8}{z^4 + 4z^2 + 16}$$
 (4 marks)

b) Is the function
$$f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$$
 continuous at $z = i$? (5 marks)

c) Define an analytic function and state the necessary condition for a function w = f(z) to be analytic in a region \mathbb{R} (5 marks)

QUESTION FOUR

- a) State any five rules of differentiation. (5 marks)
- b) Define the singularity of a function and using a relevant example in each case, describe any four types of singularity. (10 marks)
- c) Using the definition of derivative, find the derivative of $w = f(z) = z^2 2z + 1$ at $z = z_0$ and z = -1 (5 marks)

QUESTION FIVE

a) For each of the following functions, locate and name the singularities in the finite z plane and determine whether they are isolated singularities or not

i)
$$f(z) = \frac{z}{(z^2+4)^2}$$
 (3 marks)

ii)
$$f(z) = \sec\left(\frac{1}{z}\right)$$
 (3 marks)

iii)
$$f(z) = \frac{\ln(z-2)}{(z^2+2z+2)^4}$$
 (4 marks)

- b) Evaluate $\int \bar{z}dz$ from z=0 to z=4+2i along the curve given by $z=t^2+it$ (5 marks)
- c) Let f(z) be analytic inside and on a simple closed curve C except at a pole a of order m inside C. Prove that the residue of f(z) at a is given by

$$a_{-1} = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \{ (z-a)^m f(z) \}$$
 (5 marks)