

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAT 303

COURSE TITLE: LINEAR ALGEBRA III

DATE:

11/09/17

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

(a) Let A be a square matrix over a complex field $\mathbb C$. Suppose λ is an eigenvalue of A^2 , show that $\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigen value of A. (4mks)

(b) Given =
$$\begin{bmatrix} \frac{1+i}{2} & \frac{1+i}{2} \\ \frac{1-i}{2} & \frac{-1+i}{2} \end{bmatrix}$$
. Show that A is unitary (3mks)

(c) Given
$$A = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix}$$

i. Show that
$$A$$
 is a normal matrix (1mk)

ii. Let V be a vector space of dimension n over K and let $\{\phi_1 \dots \dots \phi_n\}$ be any basis on a dual space V^* . Show that $\{f_{ij} : i, j = 1 \dots n\}$ is a basis of B(V) where f_{ij} is defined by $f_{ij}(u,v) = \phi_i(u)\phi_j(v)$ and $\dim B(V) = n^2$. (5mks)

(e) Let
$$A$$
 be the a matrix such that $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 7 & -5 \\ 2 & -5 & 8 \end{bmatrix}$

i. Find a non-singular matrix P such that $D = P^T A P$.

ii. Find the signature of
$$A$$
. (5mks)

(f) . Find the adjoint of $G: \mathbb{C}^3 \to \mathbb{C}^3$ defined by

$$G(x, y, z) = [2x + (1 - i)y, (3 + 2i)x - 4iz, 2ix + (4 - 3i)y - 3z]$$
(4mks)

QUESTION TWO (20 MKS)

- (a) Suppose $A \neq I$ is a square matrix for which $A^3 = I$. Determine wether or not A is similar to a diagonal matrix if A is a matrix over
 - i. the real field

ii. the complex field (4mks)

(b) Find the adjoint of the operator $F: \mathbb{R}^3 \to \mathbb{R}^3$ such that F(x, y, z) = (3x + 4y - 5z, 2x - 6y + 7z, 5x - 9y + z). (4mks)

(c) Define a nilpotent operator

(2mks)

(d) Let A and B be matrices such that:

i. Verify that the matrices are nilpotent of index 3.

(3mks)

- ii. Find nilpotent matrices M_A and M_B respectively in canonical form that are similar to A and B respectively (4mks)
- (e) Let A be an $n \times n$ matrix over K. Show that the mapping f defined by $f(X,Y) = X^TAY$ is a bilinear form on K^n . (3mks)

QUESTION THREE (20 MKS)

(a) Define a Hermitian form.

(2mks)

- (b) Given q(x,y) is a quadratic form such that $q(x,y)=3x^2+2xy-y^2$ with linear substitutions x=s-3t, y=2s+t.
 - i. Write q(x, y) in matrix notation and find the matrix A representing q(x, y). (2mks)
- ii. Re-write the linear substitution using matrix notation and find the matrix P corresponding to the substitution. (3mks)
 - iii. Find q(s,t) using direct substitution. (3mks)

iv. Find q(s, t) using matrix notation. (2mks)

(c) Show that
$$q(x,y) = ax^2 + bxy + cy^2$$
 is positive definite iff $a > 0$ and the discriminant $D = b^2 - 4ac > 0$. (4mks)

(f) Determine wether each of the following is positive definite

i.
$$q(x, y, z) = x^2 + 2y^2 - 4xz - 4yz + 7z^2$$
 (2mks)

ii.
$$q(x, y, z) = x^2 + y^2 + 2xz + 4y^2 + 3z^2$$
 (2mks)

QUESTION FOUR (20MKS)

(a) Let T, T_1 , T_2 be linear operators on V and let $\in K$. Show that

(i)
$$(T_1 + T_2)^* = T_1^* + T_2^*$$
 (2mks)

(ii)
$$(kT)^* = \overline{k}T^*$$
 (2mks)

(iii)
$$(T_1 T_2)^* = T_2^* T_1^*$$
 (2mks)

$$(iv) (T^*)^* = T \tag{2mks}$$

- (b) Let ϕ be a linear functional on a finite dimensional inner product space. Show that there exists a unique vector $u \in V$ such that $\phi(v) = \langle v, u \rangle$ for every $v \in V$. (6mks)
- (c) Let ϕ be an eigenvalue of a linear operator T(V). Show the following.

i. If
$$T^* = T^{-1}$$
 then $|\lambda| = 1$ (2mks

ii. If
$$T^* = T$$
 then λ is real. (2mks)

iii. If
$$T = S^*S$$
 with S non-singular, then λ is real and positive. (2mks)

QUESTION FIVE (20 MKS)

(a) Let f be the bilinear form on \mathbb{R}^3 defined by $f[(x_1,x_2),(y_1,y_2)]=3x_1y_1-2x_1y_2+4x_2y_1-x_2y_2$. Find

i. the matrix A of f in the basis
$$\{u_1 = (1,1), u_2 = (1,2)\}$$
 (3mks)

ii. the matrix
$$B$$
 of f in the basis $\{v_1 = (1, -1), v_2 = (3, 1)\}$ (3mks)

iii. the change of basis matrix P from $\{u_i\}$ to $\{v_i\}$ and verify that $B=P^TAP$. (4mks)

(b) i. Distinguish between bilinear forms which are alternating and skew symetric . (2mks)

ii. Show that an alternating bilinear form is also symetric. (3mks)

(e) Given = $\begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & -4 & 8 \end{bmatrix}$. Find a non-singular matrix P such that $D = P^T A P$. (5mks)