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QUESTION ONE (30MARKS)

(a).Define the following terms

(i). Define an orthogonal matrix (1 mk)
(ii). Complex inner product (5 mk)
(iii). Hermitian matrix (1 mk)

(b). (i).Show that(1 — 21i,6 — 9i,13) and (1 + 3{, -2 — §, 5) are eigenvectors of a hermitian
matrix. (3 mks)

(ii). Find all complex scalars k for which w and v are orthogonal in C3.
u = (2i,i,30)v = (i,61,k). (2 mks)
(c). (i). If A and B are complex matrices and A and B the complex conjugates, show thatAB = AB.
(2 mks)

(ii). lllustrate the above relation for matrices P and Q where

=5i 4 4i 2= 31'] (4 mks)

Bl 1+5i]Q:[2+3i 1

(d). Prove that if A is an n X n orthogonal matrix, then the row and well as column vectors of A
forms an orthonormal set in R™ with the Euclidean inner product (5 mks)

(e). Find the quadratic form associated with matrix [_53 _83] and show that it is positive

definite. (4 mks)
(f). Show that orthogonally diagonalizable matrix must be symmetric. (3 mks)
QUESTION TWO (20 MKS)

(a). Show that if H is a hermitian matrix, then its eigenvectors from different eigenspaces are

orthogonal. (4mks)
LI R
Y

(b).i. Show thatis A = - g Zrln unitary matrix (3 mks)
2 2 2
11
2 2

i. If U is a unitary matrix, show that it is isometric. (4 mks)



(c). if A is an eigenvalue of real n X n matrix A, and if x is the corresponding eigenvector, then

Ais also an eigenvalue of 4 and X is a corresponding eigenvector. (3mks)
1 zZ —3
(d).Giventhat A=| 2 5 —4|, find a matrix H such that H = PTDP. (6mks)
-3 -4 8
QUESTION THREE (20 MKS)

(a).(i). Show that an inner product defined by f(u, v) = Y-, u;7, is a bilinear form.(4mks)

(ii). Show that g (x, ¥) = ax? + bxy + cy? is positive definite iff a > 0 and the discriminant
D = b* —4ac > 0. (4mks)

(b).(i) f u,v,w € C" a € C, show that (w,u — av) = (w,u) — a@lw, v) (3 mks)
(ii). Given that u, v € C" define the Eclidean inner product and the norm. (2 mks)

(iii) Determine the Euclidean norm of the vectorsu = (1 +(,2i,7 — 2i) and v =
(—2i,44 + Q). (3 mks)

(c). Let A be a linear operator over a complex vector space V with k a complex no. Prove tr;at
. (A=A (2 mks)
i. (kA)* = kA (2 mks)
QUESTION FOUR (20 MKS)
(a). fv,u € C", andu and ¥ are complex conjugates of u and v, for « € C,show that
(). a=u  (3mks)

(ii). au = au (3 mks)

(i) u=v=u-—1U(3 mks)
i =i 1

(b).Show that A = |-1 1 i | is notdiagonolizable. (5 mks)
0 0 1+

(c) Let A be ann X n matrix over K. Show that the mapping f defined by f(X,Y) = XTAY is a
bilinear form on K™. (4 mks)



(d). Find inner product (u,

v) of the vectors

(2 — 3i,4i, —6i — 1).( 2mks)

QUESTION FIVE (20 MKS)

(i). letu, v € C",andk € C, if f(u,v)

(ii).Define an orthogonal

= (u, v)is an inner product, sho

o -1 0
matrix, hence show thatA=1[1 O 0

g 0 =i

1 2 2
(iii). Orthogonally diagonalize matrix A if A= [2 it 2].

2 2 1

givenbyu = (2 + 3i,—4i,6i—1)andv =

w that (u, kv) = k{w,v).

(2 mks)

] is orthogonal. (3 mks)

(15 mks)



