

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
THIRD YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 303

COURSE TITLE:

LINEAR ALGEBRA III

DATE:

19/01/18

TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

- (a). Define a nilpotent matrix, hence show that $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ is a nilpotent matrix hence state the index of nilpotency. (3 mks)
- (b). (i). Let \mathbb{C}^n be a complex vector space $u \in \mathbb{C}^n$ and $k \in K$, K A scalar field. If \bar{u} denotes the conjugates of u and v respectively, show that $\overline{ku} = \bar{k}\bar{u}$. (3 mks)
- (ii). Let $u,v\in\mathbb{C}^n$ with u=(3-4i,2+i,-6i) and v=(1+i,2-i,4). Find the Euclidean norm $\|u\|$ of u and the Euclidean inner product $\langle u,v\rangle$.
- (c). (i). Given that x is the eigenvector of a nonzero matrix A corresponding to an eigenvector λ . Explain why $x \neq 0$. (2 mks)
 - (ii). Determine the eigenvalues and eigenvectors for the following matrix

$$\begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \tag{4 mks}$$

(d). If A is an orthogonal matrix,

(i).
$$det(A) = 1 \text{ or } det(A) = -1$$
. (2 mks)

(ii).
$$||Ax|| = ||x||$$
 for $x \in \mathbb{R}^n$ (3 mks)

- (e). i.Make a change of variable to transform the quadratic form $Q(x) = x_1^2 8x_1x_2 5x_2^2$ into a quadratic form with no cross-product terms. (5mks)
 - ii. Show that an inner product defined by $f(u,v) = \sum_{i=1}^n u_i \overline{v_i}$ is a complex valued bilinear form. (4 mks)

QUESTION TWO (20 MKS)

(a) Determine all possible Jordan Canonical forms J for a linear operator $T: V \to V$ whose characteristic polynomial $\Delta(t) = (t-2)^5$ and whose minimum polynomial $m(t) = (t-2)^2$.

(4mks)

(b). Let A and B be linear operators on complex vector space V such that $A\colon V\to V$ and $\colon V\to V$. If k a complex no. Prove that

i.
$$(A^*)^* = A$$
 (2 mks)

ii.
$$(A+B)^* = A^* + B^*$$
 (2 mks)

iii.
$$(kA)^* = \overline{k}A^*$$
 (2 mks)

$$iv.(AB)^* = B^*A^*$$
 (2 mks)

(c). Prove that Eigenvalues of real symmetric matrices are real and the eigenvectors are orthogonal.

(5 mks)

(b). Show that
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2}(1+i) & \frac{1}{2}(1+i) \end{bmatrix}$$
 is a Unitary matrix. (3 mks)

QUESTION THREE (20 MKS)

(ii). Classify the following quadratic forms and positive definite, negative definite or indeginite.

$$g(x,y) = 4x^2 - 2x_1x_2 + 4x_2^2$$
 (2 mks)

$$f(x,y) = 5x^2 + 4x_1x_2 + 5x_2^2$$
 (2 mks)

- (ii). Show that of H is a hermitian matrix, then its eigenvectors from different eigenspaces are orthogonal. (4 mks)
 - (iii). Find the eigenvalues of matrix A.

$$A = \begin{bmatrix} 3 & 2-i & -3i \\ 2+i & 0 & 1-i \\ 3i & 1+i & 0 \end{bmatrix}$$
 (4 mks)

(b). Let
$$\langle Ax \cdot Ay \rangle = \langle x \cdot y \rangle$$
 for all $x, y \in \mathbb{R}^n$. Show that A is orthogonal. (5 mk)

QUESTION FOUR (20 MKS)

(a). If U is unitary then, show that

(i).
$$U^*U = 1$$

(iii). Under what conditions is the matrix
$$\begin{bmatrix} a & 0 & 0 \\ 0 & 0 & c \\ 0 & b & 0 \end{bmatrix}$$
 unitary? (3 mks)

(b).(i) Show that matrix
$$C = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
 is orthogonal. (3 mks)

- (c). Prove that if A is an $n \times n$ orthogonal matrix, then the row and well as column vectors of A forms an orthonormal set in \mathbb{R}^n with the Euclidean inner product (5 mks)
- (d). If λ is an eigenvalue of real $n \times n$ matrix A, and if x is the corresponding eigenvector, then $\bar{\lambda}$ is also an eigenvalue of A and \bar{x} is a corresponding eigenvector. (4 mks)

QUESTION FIVE (20 MKS)

(i). Find a quadratic form corresponding to the following symmetric matrix

$$B = \begin{bmatrix} 4 & -5 & 7 \\ -5 & -6 & 8 \\ 7 & 8 & -9 \end{bmatrix}$$
 (2 mks)

(ii). Show that if A is orthogonally diagonalizable, it must be symmetric. (3 mks)

(iii). Orthogonallydiagonalize matrix A,
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4 \end{bmatrix}$$
 (15mks)