

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2017/2018 ACADEMIC YEAR**

THIRD YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAT 302

COURSE TITLE: REAL ANALYSIS III

DATE:

19/10/18

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

Question One: (30 marks)

- (a) Define the following terms:
 - (i) Refinement of a partition.

[2 marks]

(ii) Function of a bounded variation.

[2 marks]

(i)Step function.

[2 marks]

- (b) The partition P_n of [0,1] is given by $\{0 < \frac{1}{n} < \frac{2}{n} < \dots < \frac{n-1}{n} < 1\}$. If $f(x) = x^3$, find:

[2 marks]

[2 marks]

(i) $\underline{S}_{P_n}(f)$ (ii) $\overline{S}_{P_n}(f)$ (iii) $\int_0^1 f(x)dx$

[1 marks]

- (c) Show that the Dirichlet function defined by f(x) = 1 for all $x \in [0, 1]$ is rational and f(x) = 0 if $x \in [0, 1]$ is irrational is not Riemann integrable. 4 marks
- (d) If $f:[a,b] \longrightarrow \Re$ is continuous on [a,b]. Show that $f \in R[a,b]$. 5 marks
- (e) Let $f:[a,b] \longrightarrow \Re$ be a function of bounded variation. Show that [5 marks] v(f, [a, b]) = 0 if and only if f is a constant on [a,b].
- (f) Show that if $a_n \ge 0$ and $a_{n+1} \ge a_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges. [5 marks]

Question Two: (20 marks)

- (a) Discuss the pointwise convergence of the sequence of functions (x^n) . [6] marks
- (b) Show that if α is non-decreasing and f,g are Riemann Stieltjes integrable with respect to α , then:

$$\int_{a}^{b} (f+g)d\alpha = \int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha$$

[6 marks]

(c) Let $f:[a,b] \longrightarrow \Re$ be a function, $\{x_i: 0 \le i \le n\}$ be a partition of [a,b] and $\{y_i: 0 \le i \le m\}$ be a partition of [a,b] such that $\{x_i: 0 \le i \le n\} \subseteq \{y_i: 0 \le i \le m\}$. Show that:

$$\sum_{i=1}^{n} | f(x_i) - f(x_{i-1}) | \le \sum_{i=1}^{m} | f(y_i) - f(y_{i-1}) |$$

[8 marks]

Question Three: (20 marks)

- (a) Prove that if p^* is a refinement of partition p, then $l(p, f, \alpha) \leq l(p^*, f, \alpha)$ and $u(p, f, \alpha) \geq u(p^*, f, \alpha)$. [8 marks]
- (b) Show that a sequence f_n of bounded functions on $A \subseteq \Re$ converges uniformly on A to f if and only if $||f_n f|| \longrightarrow 0$. [5 marks]
- (c) If $\{E_n : n \in \mathbb{N}\}$ is a pairwise disjoint collection of members of lebesgue measurable set, then show that for any $X \subseteq \mathbb{R}$:

$$m^*(X \cap (\bigcup_{i=1}^{\infty} E_i)) = \sum_{i=1}^{\infty} m^*(X \cap E_i)$$

[7 marks]

Question Four: (20 marks)

(a) Show that a function defined by

$$f(x) = \begin{array}{c} 0whenxis rational \\ 1whenxis i rrational \end{array}$$

is not Riemann integrable

[6 marks]

(b) Prove that if f is increasing on [a,b] then v(f, [a, b] = f(b) - f(a). [6 marks]

(c) Consider the partition
$$P_n$$
 of $[0,1]$ given by $\{0 < \frac{1}{n} < \frac{2}{n} < \dots < \frac{n-1}{n} < 1\}$.

If $f(x) = x^2$, find:

(i) $\underline{S}_{P_n}(f)$ [2 marks]

(ii) $\overline{S}_{P_n}(f)$ [2 marks]

(iii) $\int_0^1 f(x^2) dx$ [2 mark]

If
$$f(x) = x^2$$
, find:

(i)
$$\underline{S}_{P_n}(f)$$

(ii)
$$\overline{\overline{S}}_{P_n}^n(f)$$

(iii)
$$\int_0^1 f(x^2) dx$$

[2 mark]

Question Five: (20 marks)

(a) Prove that any function is Riemann integrable if and only if for a given $\varepsilon > 0$, there exists a partition P such that

$$|u(P, f) - l(P, f)| < \epsilon$$

[7 marks]

(b) Show that every continuous function is integrable.

[7 marks]

(c) Let $\{f_n\}$ be a sequence of continuous functions. If $\{f_n\}$ converges uniformly to f on [a,b] then show that f is continuous and $\lim_{n\to\infty}\int_a^b f_n(x)dx =$ $\int_a^b f(x)$

======== END ============