

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 301

COURSE TITLE: REAL ANALYSIS II

DATE:

08/10/18

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) State and prove the Cauchy-Schwarz inequality. (6 marks)
- b) Show that a subset A of a metric space (X, ρ) is open if and only if $A = A^{\circ}$ (where A° is the interior of A).
- c) Let (X, ρ) be a metric space. Show that for any subset E of X, the interior of E (i.e. E°) is an open set. (4 marks)
- d) Show that any finite subset E of a metric space (X, ρ) is closed. (4 marks)
- e) In (\mathbb{R}, d) , let $E = (a, b] \cup \{c\}$. Find the derived set of E i.e. the set of all limit points of E. (3 marks)
- f) Consider (\mathbb{R}, d) and let $x_n = \frac{1}{n} \quad \forall n \in \mathbb{N}$. Show that (x_n) converges in (\mathbb{R}, d) .
- g) Let $(X, \rho), (Y, \sigma)$ be metric spaces and E be a non-void subset of X. Let $f: E \to Y$ be a function and p be an isolated point of E, show that f is continuous at p. (3 marks)
- h) Let (X, ρ) be a metric space and E be a subset of X. Show that \overline{E} (i. e. the closure of E) is always closed. (4 marks)

QUESTION TWO (20 MARKS)

- a) Let (X, ρ) be a metric space and E be a subset of X. Show that a point $p \in X$ is a limit point of E if and only if every open neighbourhood N(p) of P contains infinitely many distinct points of E.
- b) Consider the set \mathbb{R}^n of all ordered n-tuples (a_1, a_2, \dots, a_n) where $a_i \in \mathbb{R} \ \forall i = 1, 2, \dots, n$. If $\vec{x} = (x_1, x_2, \dots, x_n)$ and $\vec{y} = (y_1, y_2, \dots, y_n)$. Define a number $\rho(\vec{x}, \vec{y})$ by $\rho(\vec{x}, \vec{y}) = Sup\{|x_1 y_1|, |x_2 y_2|, \dots, |x_n y_n|\}$ $= Max\{|x_1 y_1|, |x_2 y_2|, \dots, |x_n y_n|\}.$

Show that the function ρ is a metric i.e. (\mathbb{R}^n, ρ) is a metric space. (7 marks)

- c) Define the terms
 - i. discrete metric space

openneighbourhood. (2 marks)

d) Let (X, ρ) be a metric space and $p \in X$. Let ε be a positive real number. Show that the closed neighbourhood $\overline{N}(p; \varepsilon)$ is a closed subset of (X, ρ) (5 marks)

QUESTION THREE (20 MARKS)

- a) Let (X, ρ) be a metric space. Show that a finite subset E of X has no limit points i.e. $E^d = \phi$. (3 marks)
- b) Define the terms metric and metric space. Let (X, ρ) be a metric space. Let Y be a non-void subsetof X. Define a function σ on $Y \times Y$ by $\sigma(x, y) = \rho(x, y) \quad \forall \ x, y \in Y$ i.e. $\sigma = \rho|_{Y \times Y}$. Show that (Y, σ) is also a metric space. (5 marks)
- c) If p,q are any distinct points in a metric space (X,ρ) . Show that there are open neighbourhoods N(p), N(q) of p,q respectively such that $N(p) \cap N(q) = \phi$ i.e. N(p) and N(q) are disjoint. (5 marks)
- d) Let E be a non-void subset of \mathbb{R} which is bounded above. Consider the Euclidean metric in \mathbb{R} . Show that $Sup\ E\in\overline{E}$. Similarly if E is a non-void subset of \mathbb{R} which is bounded below, show that $Inf\ E\in\overline{E}$.
- e) Let (X, ρ) be a metric space and E a non-void subset of X. Let p be any given point in X. Explain the meaning of the following
 - i. E is bounded in (X, ρ) .
 - ii. Diameter of E.

(2 marks)

QUESTION FOUR (20 MARKS)

- a) Let (X, ρ) be a metric space and Y a non-void subset of X. Let $\rho_Y = \rho|_{Y \times Y}$ and $E \subseteq Y$. Show that "E is closed in (Y, ρ_Y) " if and only if there is a subset F of X which is closed in (X, ρ) and such that $E = F \cap Y$.
- b) Let (X, ρ) be a metric space and E be a non-void subset of X. Show that E is bounded if and only if diameter of E is finite. (4 marks)
- c) Let (X, ρ) be a metric space and (x_n) be a sequence in X. Show that
 - i. Show that every convergent sequence is Cauchy.
 - ii. Every Cauchy sequence in a metric space is bounded. (7 marks)
- d) Let (X, ρ) be a metric space and E a non-void subset of X. Show that $p \in X$ is a limit point of E if and only if there is a sequence (x_n) of distinct points of E (all distinct from p) such that (x_n) converges to p in (X, ρ) .

(4 marks)

QUESTION FIVE (20 MARKS)

- a) Let (X, ρ) be a metric space and E a non-void subset of X. Let p be any given point in X. Show that $\rho(p, E) = 0$ if and only if $p \in \overline{E}$. (5 marks)
- b)
- c) Give an example of a metric space in which a subset is closed and bounded but not compact. (4 marks)
- d) Let (X, ρ) be a metric space and E be a compact subset of X. show that E is closed i.e. compactness implies closedness. (6 marks)
- e) Let (X, ρ) and (Y, σ) be metric spaces and $f: X \to Y$ be a function. Show that f is continuous with respect to ρ and σ if and only if for every subset V of Y which is open in (Y, σ) the set $f^{-1}(V)$ is open in (X, ρ) . (5 marks)