

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 252

COURSE TITLE: ENGINEERING MATHEMATICS II

DATE: 22/09/17 TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) (30MARKS)

(a) Use the bisection method to determine the positive root of the equation (5 marks) $x + 3 = e^x$, correct to 2 decimal places.

(b) Show that

$$\Delta(u_k v_k) = v_{k+1} \Delta u_k + u_k \Delta v_k.$$

(4 marks)

(c) Evaluate $\Delta^n(e^{3x+5})$.

(4 marks)

- (d) Evaluate $\int_0^{2.4} e^{-\frac{x^2}{3}} dx$, correct to 4 significant figures, using the mid-ordinate rule with six intervals. (6 marks)
- (e) Use Euler's method to obtain a numerical solution of the differential equation $\frac{dy}{dx} + y = 2x$, given the initial conditions that at x = 0, y = 1, for the range x = 0(0.2)0.6. Draw the graph of the solution in this range. (7 marks)
- (f) Compute the missing values in the following table

ſ							
	X	0	5	10	15	20	25
	у	6	10	_	17	-	31

(4 marks)

QUESTION TWO (20 MARKS)

(a) Fit a polynomial of degree three which takes the following values using Newton-Gregory backward interpolation formula. Hence find y(-1) and y(4.5).

X	3	4	5	6
y	6	24	60	120

(8 marks)

(b) Using forward differences find the first and second derivatives of f(x) at x = 16 for the data given below:

X	15	17	19	21	23	25
f(x)	3.873	4.123	4.359	4.583	4.796	5.000

(12marks)

QUESTION THREE (20 MARKS)

(a) Compute the value of x, when y=8 by inverse interpolation using Lagrange's formula

I	x	-2	-1	1	2
-	у	-7	2	0	11

(8 marks)

(b) State and derive Newton-Gregory forward interpolation formula.

(12 marks)

QUESTION FOUR (20MARKS)

(a) Evaluate $\Delta^2 \left\{ \frac{4x^2 - 25x + 31}{(x-1)(x-2)(x-3)} \right\}$. (10 marks)

(b) Find the approximate value of the real root of the equation $2x - \log_{10} x - 7 = 0$ by using Newton-Raphson method. (10 marks)

QUESTION FIVE (20 MARKS)

(a) Given that $y = \ln x$, h = 0.2, evaluate $I = \int_4^{5.2} \ln x \, dx$ by:

(i) Trapezoidal rule; (6 marks)

(ii) Simpson's $\frac{1}{3}$ rule; (3 marks)

(iii) Compare the above results with exact value. (4 marks)

(b) Find the approximate value of $\int_0^{1.1} e^x dx$, n = 12 by Weddle's rule and determine the percentage error. (7 marks)