

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 252

COURSE TITLE: ENGINEERING MATHEMATICS II

DATE: 12/10/18 **TIME**: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- (a) Given the equation $x^2-5x+3=0$ two iterative formulae can be formed to solve the equation
 - (i) Form these two iterative formulae

(6 marks)

- (ii) One of these iterative formulae will converge. Starting with $x_1=5$ test for convergence. (4 marks)
- (iii) Hence use the one that will converge to find a solution for $x^2-5x+3=0$ to three significant figure (4 marks)
- (b) Find the polynomial of the lowest possible degree which assumes the values 3,12,15, -21 when x has the values 3,2,1,-1 respectively using Newton's divided difference formula (6 marks)
- (c) (i) For the equation $x \log_{10} x = 1.2$ show that a root exists between x=2 and x=3.
 - (ii) Use regula-falsi method to find its root correct to three decimal places.

(10 marks

QUESTION TWO (20MARKS)

(a) Given that x_n is an approximation to the root of the equation.

$$x^3 - 2x^3 - 4 = 0$$

(i) Show using Newton-Raphson method that a better approximation $x_n^1 + 4$ is given by

$$x_{n+1} = \frac{2x_n^3 - 3x_n^2 + 4}{3x_n^2 - 6x_n} \tag{7 marks}$$

(ii) Hence taking the first approximation x_1 = 3.5, find to four decimal places, the root of the equation (5 marks)

(b) Show that
$$\nabla^2(2^x) = 2^x - 2 \cdot 2^{x-h} + 2^{x-2h}$$
 (4 marks)

(c) Estimate the missing value in the table

X	1	2	3	4	5
f(x)	2	5	7	-	32

(4 marks)

QUESTION THREE

(20 MARKS)

(a) The table below represents a polynomial function f(x)

X	-1	0	1	2	3	4	5
f(x)	-6	-3	0	9	30	69	132

Use Newton-Gregory interpolation formula to determine to four significant figure the values of

- (i) F(-0.2)
- (ii) F(3.4)

(10 marks)

(b) With a step size of $\Delta x = 0.2$ compute three steps of Euler's method to approximate the solution of

$$\frac{dy}{dx} = -0.3y$$
 starting with y=25 for x=1

giving your answer to four significant figures

(6 marks)

(4 marks)

(c) For the shift operation E, show that

$$E^2 f(x) = f(x+2h)$$

QUESTION FOUR (20 MARKS)

- (a) (i) Use Simpsons 1/3 rule to find the area under the circle. $f(x) = 0.2 + 25x 200x^2 + 675x^3 900x^4 + 400x^5 \text{ in the range } [0,0.8] \text{ using 4 strips to 6}$ decimal places (7 marks)
 - (ii) Determine the exact area

(3 marks)

(i) Hence determine the error to 6 decimal places

(2 marks)

(b) Use the trapezoidal rule to evaluate

 $\int_0^{\pi} \sin x \ dx$ using 6 intervals correct to four decimal places

(8 marks)

QUESTION FIVE (20 MARKS)

(a) Given that

$$f(0) = 1$$
, $f(1) = 3$, $f(3) = 55$

(ii) Find the lagrange interpolation polynomial which fits the data

(9 marks)

(iii)Hence find an approximate value for f(2)

(2 marks)

(iv) Using inverse interpolation obtain a value of x when y = 19 given the following values

X	0	1	20
y	0	1	20

(9 marks)