

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAT 204

COURSE TITLE: REAL ANALYSIS I

DATE: 20/09/17

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1 : COMPULSORY (30 MARKS)

a) Given $a \in \mathbb{R}$ and that $a \neq 0$ prove that a^{-1} exists.

(5mks)

b) Given a functions f, g such that $f:\mathbb{R}\to\mathbb{R}$ and $g:\mathbb{R}\to\mathbb{R}$. Define $f(x)=x^3-x^2$ and g(x)=4x+5. Find

(i) fg(x)

(3 mks)

(ii) gf(x)

(3 mks)

(iii) Hence the value of fg(2) and gf(2)

(4mks)

c) If x and y are positive real numbers the prove that x < y iff $x^2 < y^2$

(7mks)

- d) Given that $a,b,v,u\in\mathbb{R}$, show that if v+a=a the v=0 and if ub=b for $b\neq 0$ then u=1
- e) Define the term Supremum of a set

(2mks)

QUESTION 2: (20 MARKS)

a)If a and b are real numbers , prove the triangle inequality $|a|+|b|\geq |a+b|$ (8mks)

b) Given that A and B are subsets of a universal set U then prove that

$$(A \cap B)^c = A^c \cup B^c$$

(8 mks)

c)Find the supremum and infimum of the set

$$A = \left\{ \frac{2+n}{n} : n = 1, 2, 3, \dots \right\}$$

(4mks)

2

QUESTION 3: (20 MARKS)

a) Let a and b be any two distinct rational numbers in \mathbb{R} and that a < b. Show that we can find we can find another rational number q between a and b. That is a < q < b (8mks)

b)
$$\forall a, b, c \in \mathbb{R}$$
 Prove that $a^2 + b^2 + c^2 \ge ab + ac + bc$ (8mks)

c) If
$$xz = yz$$
 and that $z \neq 0$, then show that $x = y$ (4 mks)

QUESTION 4: (20 MARKS)

a) For any
$$x \in \mathbb{R}$$
 and that $x \neq 0$. Show that $x^2 > 0$ (4mks)

b) Show that
$$\sqrt{18}$$
 is irrational (8mks)

c) Given that the set
$$X = \{1, 2, 3\}$$
 Find $\mathbb{P}(X)$ the power set of X (8mks)

QUESTION 5: (20 MARKS)

- a) Define the term rational number (2 mks)
- b) Prove that:
 - i) The union of an arbitrary collection of open subsets in $\mathbb R$ is open. (4mks)
 - ii) The union of an arbitrary collection of closed subsets in $\mathbb R$ is closed. (4 mks)
- c) If $\forall n \in \mathbb{N}$, the set E is countable then prove that $\bigcup_{n=1}^{\infty} E_n$ is also countable. (10mks)