

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

TIME: 3 PM -5 PM

COURSE CODE: MAT 204

COURSE TITLE: REAL ANALYSIS I

DATE: 10/10/18

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE: (30 MARKS)

- a) Define the following terms
 - (i). Rational number set (2 mks)
 - (ii). Open sets (2 mks)
 - (iii). Sets difference (1mk)
 - (iv). Order axiom (2 mks)
- b) Let \mathbb{F} be a field and $x, y \in \mathbb{F}$. Show that $|x + y| \le |x| + |y|$. (5mks)
- c) Let $\delta = 0.0002$. Given that $N(x, \delta)$ is a neighbourhood of x for $x \in \mathbb{R}$
 - (i). Find a neighborhood contained in $N(x, \delta)$. (2 mks)
 - (ii). Find an closed set contained in the neighborhood of (i) above. (3 mks)
- d) Show that an infinite subset of a countable set is countable (4mks)
- e) Give the precise definition of a continuous function, hence, show that f(x) = 5 6x is continuous at x = 3. (6 mks)
- f) Let A be a closed unbounded subset of the set \mathbb{R} . Provide an example of A explaining the two features it possess, closedness and unboundedness. (3 mks)

QUESTION TWO (20 MARKS)

- a) Define an onto function given an example (2mks)
- b) Show that arbitrary union collection of open sets $\{B_i \subset \mathbb{R}, i \in \Lambda\}$ is open. (5 mks)
- c) (i). Prove that there is no rational number x such that $x^2 = 3$. (7 mks)
 - (ii). State the completeness axiom. (2 mks)
- d) Let f be a function from a space X to another Y.
 - (i). Define inverse of f. (1 mks)
 - (ii). If $f(x) = \frac{5-x}{2+3x}$ find $f^{-1}(x)$. (3 mks)

QUESTION THREE (20 MARKS)

- a) Differentiate between the supremum and infimum of a subset A of a field F. (4 mks)
- b) State the first principal of induction hence use it too show that for $n \ge 1$, $1^2 + 2^2 + 3^2 + \dots + k^n = \frac{n}{6}(n+1)(2n+1)n \in \mathbb{N}$. (8mks)
- c) Let A and B be two finite sets. Show that $(A \cup B)^c = A^c \cap B^c$. (8 mks)

QUESTION FOUR (20 MARKS)

- a) Let A and B be two sets such that A = [-2,3] and B = (0,2]. Find $A \cap B$. (2 mks)
- b) Let $\{E_1, E_2, \dots E_n\}$ be a collection of closed sets. Show that the finite intersection, $\bigcap_{i=1}^n E_i$ is closed. (5 mks)
- c) (i). What is an ordered field? (3 mks)
 - (ii). Given \mathbb{F} is an ordered field and $a,b\in\mathbb{F}$ show that $|a|\leq b$ implies $-b\leq a\leq b$. (3 mks)
 - (iii). Let ${\mathbb F}$ be an ordered field. Define a metric d on the field as

$$d(x,y) = f(x) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases} \text{ for } x, y \in \mathbb{F}$$

Show d is a metric.

(7mks)

QUESTION FIVE (20 MARKS)

- a) Define the term Cartesian product of sets A and B, hence find the Cartesian product of the two sets if $A = \{-4, -2, 5\}$ and $B = \{3, 1, 2\}$. (5mks)
- b) Let P=(0,1] and $Q=\left(\frac{1}{n},n^2\right)$, $n\in\mathbb{N}$. Find the minimum, maximum, infimum and supremum of the two sets. (8 mks)
- c) What is a countable set (1 mks)
- d) Let $X = \{2,3,5,7,11,18\}.$
 - (i). Categorize the set as finite or infinite. Explain. (2 mks)
 - (ii). Categorize X as bounded and unbounded given reasons. (4 mks)