

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 204

COURSE TITLE:

REAL ANALYSIS I

DATE:

12/01/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

a. Define the following

i. Open neighbourhood (3marks)

ii. Open set (2marks)

iii. Countable Set (2marks)

b. For any two finite sets A and B, show that $(A \cup B)^C = A^C \cap B^C$ (11 marks)

c. If $\{E_1, E_2, \dots, E_n\}$ is any finite collection of closed subsets of X w.r.t.(X,d), show that

 $\bigcap_{i=1}^{n} E_i \text{ is also closed}$ (5marks)

d. Show that $|a + b| \le |a| + |b|$ (7marks)

QUESTION TWO (20MARKS)

a. Define the following

i. Bounded set (2marks)

ii. The completeness theorem (2marks)

iii. Supremum (2marks)

b. Show that if x and y are positive real numbers, then x < y iff $x^2 < y^2$ (9marks)

c. Let S be a non-empty set of real numbers with sup say b. show that $\forall a < b \exists x \in S$ such

that $a < x \le b$ (5marks)

QUESTION THREE (20MARKS)

a. Define the following

i. Surjective (2marks)

ii. Injective (2marks)

b. Consider the function $f(1, -\infty) \to (0,1)$ defined by $f(x) = \frac{x-1}{x+1}$. Show that f posses an

inverse $f^{-1}(y) = \frac{y+1}{1-y}$ (4marks)

- c. Show that the empty set \emptyset is always open (5marks)
- d. Suppose that A and β_{λ} for all $\lambda \in \Lambda$ are given sets. Show that

$$A \cup (\cap \beta_{\lambda}) = \cap (A \cup \beta_{\lambda})$$
 (7marks)

QUESTION FOUR (20MARKS)

a. Define the following

i. Removable discontinuity (2marks)

ii. Infinite discontinuity (2marks)

iii. Finite discontinuity (2marks)

b. Show that a set S of real numbers is bounded iff $\exists k \in \mathbb{R}$ such that $|x| \leq k$ for

all $x \in S$ (8marks)

c. Show that $f(x) = \begin{cases} \frac{2x-6}{x-3} & when \ x \neq 3 \\ 2 & when \ x = 3 \end{cases}$ is continuous at x = 3 (6marks)

QUESTION FIVE (20MARKS)

a. Define the following

i. Composition of a function (2marks)

ii. Inverse of a function (2marks)

iii. Cardinality (2marks)

b. Show that \emptyset , X are always closed in (X, d) (3marks)

c. Show that if $x \in \mathbb{R}$ then |xy| = |x||y| (4marks)

d. Show that an infinite subset of a countable set is countable (3marks)

e. Let (X, d) be a metric space. Show that the union of any arbitrary family of subsets open in

(X, d) is open in (X, d). (4marks)