

(Knowledge for Development)

KIBABII UNIVERSITY

MAIN EXAMINATION

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS AND EDUCATION SCIENCE/ARTS (SB)

COURSE CODE:

MAT 204

COURSE TITLE: REAL ANALYSIS I

DATE: 03/12/18

TIME: 11.30-1.30PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) (30 MARKS)

- a) Show that if $x \neq 0$, then $x^{-1} \neq 0$ and x^{-1} is unique. (3mks)
- b) For every $x \neq 0$, show that $x^2 > 0$, hence show that 1 > 0. (3mks)
- c) Let (S, <) be an ordered set and E a subset of S, if the least upper bound of E (lubE) and the greatest lower bound of E (glbE) exist. Show that i) the lubE is unique (4 mks)
 - ii) the glb.E is unique.

(4 mks)

d) Show that $\sqrt{3}$ is an irrational number.

(4mks)

e) State the completeness axiom for \Re

(2mks)

(4mks)

- f) Let A be a nonvoid subset of \Re which is bounded above. Define a set B by $B = \{-x; x \in A\}$, show that B is bounded below and -sup A= inf B.
- g) If a and b are given real numbers such that for every real number $\varepsilon > 0$, $a \le b + \varepsilon$, show that $a \le b$ (5mks)
- h) Define an inductive set?

(2mks)

QUESTION TWO (20 MARKS)

- a) For any subset E of a metric space (X, ρ) , prove that E^0 is an open set. (6mks)
- a) Consider the metric space (\Re,d) and let $f:\Re\to\Re$ be defined by f(x)=|x|. Show that f is uniformly continuous. (6mks)
- c) Show that the limit of a convergent sequence is unique in a metric space (8mks)

QUESTION THREE (20 MARKS)

a) Show that every infinite set E contains a countable subset A.

(7mks)

- b) Differentiate between an algebraic and a transcendental number giving examples in each case (3mks)
- c) Does the equation $x^2 + 1 = 0$ have a solution in \Re ? Show your working.

(4mks)

- d) Define the following terms;
 - i. A metric space

(4mks)

ii. An interior point of a set E

(2mks)

QUESTION FOUR (20 MARKS)

- a) Suppose that an open interval (0,1) is equivalent to \Re . Show that \Re is uncountable (10mks)
- b) State and provide a proof of Cauchy -Schwarz inequality. (10mks)

QUESTION FIVE (20 MARKS)

- a) Let A and B be nonvoid subsets of \Re and define the set $A + B = \{x + y; x \in A, y \in B\}$,
 - i. If A and B are bounded above, then show that A+B is also bounded above and sup(A+B)=sup.A+sup.B (5mks)
 - ii. If A and B are bounded below, then show that A+B is also bounded below and inf.(A+B)=inf.A+inf. B (5mks)
- b) For every real numbers x and a, a > 0, show that $|x| \le a$ iff $x \in [-a, a]$ (4mks)
- c) Let A, B, C be nonvoid sets and $f: A \to B$ and $g: B \to C$ be bijections. Then, prove that $(g \circ f)^{-1}$ exists and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. (6 mks)