

(Knowledge for Development)

KIBABII UNIVERSITY

BACHELOR OF SCIENCE

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND

COURSE CODE: MAT 224

COURSE TITLE: ANALYTIC GEOMETRY

DATE: 18/01/18 **TIME**: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Convert the equation of the curve $x = 1 + 2\cos\theta$, $y = 3 + 2\sin\theta$ into Cartesian form (3 mks) and hence identify the curve.
- b) Determine the length of the curve $x = \frac{2}{3}(y-1)^{\frac{3}{2}}$, for $1 \le x \le 4$ (4 mks)
- c) Find the coordinates of the point where the line x = 2 + t, y = -t, z = 2t crosses the (4 mks) plane 2x + y + z = 16
- d) A point P divides a line joining points (2, 3, 4) and (6, 2, 4) in the ratio 3:2. Find the (3 mks)coordinates of the point P.
- e) Convert the Cartesian coordinate $(2\sqrt{3}, 6, -4)$ to spherical coordinate. (4 mks)
- f) Show that the planes 2x + 3y + z + 3 = 0 and 3x + 4.5y + 1.5z 4 = 0 are parallel and hence find the distance between them.
- g) Identify vertices and foci of the curve $\frac{(x-2)^2}{16} + \frac{(x-4)^2}{9} = 1$. Sketch the curve (5 mks)
- h) Determine the angle between the lines whose direction ratios are (1, 1, 2) and (3 mks) $(\sqrt{3}, -\sqrt{3}, 1)$

OUESTION TWO (20 MARKS)

- a) Line L₁ passes through the points (2, 1, 3) and (4, 2, 2) and meets line L₂ at a point M.if the direction cosine of L_2 is (2, 2, 4), find the acute angle between the lines.
- b) Determine the acute angle between the lines whose direction cosines are $(\frac{1}{2}, \frac{1}{\sqrt{2}}, 3)$ and $(6, \frac{1}{\sqrt{2}}, 3)$ (3 mks)
- c) Find the direction cosine of a line normal to the lines whose equations are x = 4 - t, y = -3 + 2t, z = 5 - 3t(6 mks) x = -2t - 4, y = t - 1, z = 3t + 2
- d) Find the direction cosine of the perpendicular from the point (1, 2, 1) to the line $x-2=-y-1=\frac{z+1}{z-2}$ (7 mks)

QUESTION THREE (20 MARKS)

- a) A curve has the parametric equations $x = 1 + 3\cos\theta$ and $y = 3 + 3\sin\theta$
 - (7 mks) Sketch the curve i.
 - (3 mks)Convert the equations into Cartesian form and identify it. ii.
- b) Identify the curve given by the equations $x = 2 + 3\cos\theta$ and (2 mks) $y = 5 + \sin \theta$
- c) By the help of trigonometric functions, convert the equations below into parametric form.

i.
$$\frac{(x+4)^2}{2} - \frac{(x-1)^2}{8} = 1$$
 (4 mks)
ii.
$$\frac{(x-1)^2}{3} + \frac{(x+4)^2}{7} = 1$$
 (4 mks)

ii.
$$\frac{(x-1)^2}{3} + \frac{(x+4)^2}{7} = 1$$
 (4 mks)

QUESTION FOUR (20 MARKS)

a) Define the following terms;

i. Parabola(2 mks)ii. Hyperbola(2 mks)iii. Ellipse(2 mks)

b) Given the curve $9x^2 - 4y^2 - 72x + 8y + 176 = 0$, find the foci, centre and asymptotes of the curve and hence sketch it. (7 mks)

c) An ellipse has foci (2, -2), (4, -2) and vertices (5, -2), (1, -2)

i. Find the equation of the curve. (4 mks)

ii. Sketch the curve (3 mks)

QUESTION FIVE (20 MARKS)

a) Derive the relationship between

i. Cartesian and cylindrical coordinatesii. Cartesian and spherical coordinates(3 mks)(4 mks)

b) Convert the Cartesian coordinate (2, -1, 1) into

i. Cylindrical coordinateii. Spherical coordinate(3 mks)(3 mks)

c) Carry out the following conversions

i. The Cartesian equation $x^3 + 2x^2 - 6z = 4 - 2y^2$ to cylindrical coordinates (3 mks)

ii. The Cartesian equation $x^2 + y^2 = -z^2 - 2$ to spherical coordinates (4 mks)