

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2015/2016 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE
(MATHEMATICS) AND BACHELOR OF EDUCATION

COURSE CODE: MAT 224

COURSE TITLE: ANALYTIC GEOMETRY

DATE:

29/4/16

TIME: 8.00 AM -10.00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) (30 MARKS)

- (a) Find the distance of the point (2, 4, -5) from the plane 5x 3y + z 10 = 0. (2 mks)
- (b) Calculate the length of the curve $y = \ln(\sec x)$ for $0 \le x \le \frac{\pi}{4}$ (round your answer to 2 decimal places) (5mks)
- (c) Write the vector form of a line through the points $P_1 = (-3, 1, -4)$ and $P_2 = (4, 4, -6)$ in parametric form. (3mks)
- (d) Find the center and the radius of the circle $x^2 + y^2 4x + 6y = 12$ (3mks)
- (e) Determine the angle between the lines whose direction ratios are (1, 1, 2) and $(\sqrt{3}, -\sqrt{3}, 0)$ (3mks)
- (f) Given, the point (-2,-2,1), in Cartesian coordinates, convert it to
 - (i) Cylindrical coordinates (3mks)
 - (ii) Spherical coordinates (3mks)
- (g) Sketch and identify the curve defined by the parametric equations;

(i)
$$x = 4\cos t, y = 2\sin t \ 0 \le t \le 2\pi$$
 (4mks)

(ii)
$$x = 2 + \cos t, y = 4 + \sin t \ 0 \le t \le 2\pi$$
 (4mks)

QUESTION TWO (20 MARKS)

- (a) Given the equation of a circle $x^2 + y^2 = r^2$.
 - (i) Write this equation in parametric form (4mks)
 - (ii) Show that the length of the curve from t = 0 to $t = 2\pi$ is $2\pi r$ (4mks)
- (b) Eliminate the parameter t and identify the curve defined by the parametric equations $x = t \cos t$, $y = t \sin t$ for $0 \le t \le 3\pi$. (4mks)
- (c) Find the equation of a planeP containing the point (-3,1,3) and perpendicular to the vector, n = < 2,4.8 > in normal form (4mks)
- (d) Find the vector equation of a line through the points $P_1 = (-3, 2, -4)$ and $P_2 = (4, 4, -6)$ in symmetric form. (4mks)

QUESTION THREE (20 MARKS)

- (a) Define the terms (6 mks)
 - (i) Parabola
 - (ii) Hyperbola
 - (iii) Ellipse
- (b) Analyze the following the following curves, in each case sketch its graph (14 mks)
 - (i) $y^2 + 2y + 8x + 17 = 0$
 - (ii) $9x^2 4y^2 72x + 8y + 104 = 0$
 - (jj) $2x^2 + y^2 4x 6y + 3 = 0$

QUESTION FOUR(20 MARKS)

- (a) Given lines whose direction ratios are given by the relations l + m + n = 0 and $l^2 + m^2 n^2 = 0$, find the angle between the lines. (8mks)
- (b) Find the ratio in which the line through the points (1, -3, 2) and (-5, 4, -3) is divided by the plane 2x 3y + z + 6 = 0. Also find the coordinates of the point of intersection. (7mks)
- (c) Find the coordinates of the point where a line through (3, -4, -5) and (2, -3, 1) crosses the plane 2x + y + z = 7 (5mks)

QUESTION FIVE(20 MARKS)

- (a) Using a diagram, derive the relationship between the Cartesian and spherical coordinates, hence convert (-1, 1, $-\sqrt{2}$) from Cartesian to spherical coordinates. (10 mks)
- (b) Given a Cartesian coordinate $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 5\right)$ convert the point to cylindrical coordinates (5 mks)
- (c) Convert the equation r = 3 into Cartesian coordinates and identify the surface of the equation given that the equation is in three dimension. (5 mks)