



(Knowledge for Development)

## KIBABII UNIVERSITY

# **UNIVERSITY EXAMINATIONS** 2017/2018 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER

# SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

**MATHEMATICS** 

COURSE CODE:

**MAT 223** 

COURSE TITLE: DYNAMICS I

DATE:

04/10/18

TIME: 3.00 PM-5.00 PM

# **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

#### Question One (30mks)

- a) A particle moves such that its position vector is given by  $\mathbf{r} = \cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}$  where  $\omega$  is a constant.
  - i. Calculate its velocity v and acceleration a

(2mks)

- ii. Show that its velocity v is perpendicular to its position vector. (2mks)
- b) Calculate the total work done in moving a particle in a force field given by  $\mathbf{F} = 7xy\mathbf{i} 2z\mathbf{j} + 3x\mathbf{k}$  along the curve  $x = t^2 + 1$ ,  $y = t^2$ , and  $z = 2t^2$  from t = 1 to t = 2.(6mks)
- c) Derive the following equation of uniformly accelerated motion  $\omega^2 = \omega_0^2 + 2a\theta(4\text{mks})$
- d) A pulley of radius 2m is rotating with speed of 400rpm. Calculate its angular velocity and linear velocity.(3mks)
- e) Let there be a general direction OM around which a vector OA of constant magnitude rotates with constant angular velocity  $\omega$  in a fixed frame. Show that  $\frac{dA}{dt} = \omega \times A(5 \text{mks})$
- f) A gun is shot horizontally at a target 50m away. The bullet hits the target 1.87cm below the aiming point. (use  $g = 9.81ms^{-2}$ )
  - i. What is the bullet's time of flight? (3mks)
  - ii. What is the bullet's muzzle velocity? (2mks)
- g) Obtain an expression for velocity in polar coordinates system. (3mks)

#### Question Two (20mks)

- a) A swallow flying in a horizontal plane has velocity  $v_0 = (5i + 2j)ms^{-1}$  at a point in the sky whose position vector is  $r_0 = (10i 3j)m$  relative to a point on the earth's surface. After the swallow flies with constant acceleration for 22 seconds, its velocity is  $v = (8i 6j)ms^{-1}$ .
  - i. What are the components of acceleration? (5mks)
  - ii. Where is it at  $t=28_s$  and in what direction is it moving? (5mks)
- b) A wheel starting from rest is accelerated at the rate of 5rad/s<sup>2</sup> for an interval of 10s. If it is then made to stop in the next 5s by applying the brakes, find:
  - i. The maximum angular velocity attained. (2mks)
  - ii. The total angle turned.(4mks)
  - iii. Its angular velocity and the total angle turned 2s before stopping. (4mks)

#### Question Three (20mks)

Show that the expression for acceleration is spherical coordinates is given by

$$a = (\ddot{r} - r\dot{\theta}^2 \cos^2 \theta - r\dot{\theta}^2)e_r + (2\dot{r}\dot{\theta}\cos \phi + r\ddot{\theta}\cos \phi - 2r\theta\sin \phi)e_0 + (2\dot{r}\dot{\theta} + r\phi^2\sin\phi\cos\phi + r\ddot{\phi})e_0$$

Where the expressions of unit vectors are:

$$\begin{aligned} \boldsymbol{e}_r &= \cos\theta \cos\emptyset i + \sin\theta \cos\emptyset j + \sin\emptyset k \\ \boldsymbol{e}_\emptyset &= \sin\theta i + \cos\theta j \\ \boldsymbol{e}_\theta &= -\cos\theta \sin\emptyset i - \sin\theta \sin\emptyset j + \cos\emptyset k \end{aligned} \tag{20mks}$$

#### Question Four (20mks)

- a) A cylindrical roller is in contact at its top and bottom with two conveyor belts. If the top belt runs at a uniform speed of 8m/s and the bottom at 5m/s, find the linear velocity and angular velocity of the roller.(7mks)
- b) Find the angular and linear velocities of pulley of radius 2.4m rotating with a speed of 500rmp. (3mks)
- c) A 10,000N aircraft is descending on a cylindrical helix. The rate of descent is z=-10m/s, the speed is v=211m/s and  $\theta=0.05~rad/s$ . What is the force in the aircraft and the radius of curvature of the path? (10mks)

### Question Five (20mks)

consider two frames of reference S and S' with unit vectors n = (i, j, k) and

n' = (i, j, k) and with a common origin. Let S' rotate with some axis through the origin with angular velocity  $\omega$ .

Given a particle p whose position vectors are  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + \mathbf{z}\mathbf{k}$  and  $\mathbf{r} = x'\mathbf{i}' + y'\mathbf{j}' + z'\mathbf{k}'$  relative to the frames S and S' respectively,

- a) show that  $V = v' + \omega x r$ , where v and v' are expressions of velocity vectors in frames S and S' respectively. (10mks)
- b) Obtain the expressions for accelerations in both frames and by use of Newton's second Law of motion, obtain the expressions for Coriolis and Centrifugal forces. (10mks)