

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 222

COURSE TITLE: CALCULUS III

DATE: 19/10/18 TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - (i) A critical point
 - (ii) Local minimum
 - (iii) Sequence
 - (iv) Geometric series (4 mks)
- b) Use the 1st principles to determine $\frac{\partial f}{\partial y}$ given that $f(x,y) = 2x^2 + 3xy^2 xy$
- c) A cylinder has a volume of $44.78 cm^3$.
 - (i) What dimensions yields the minimum surface area (5 mks)
 - (ii) Find the minimum surface area (1 mk)
- d) Let $f(x, y, z) = z\sin(xy) e^{2z^2x} + \ln(xz)$. Find
 - (i) f_{xx} (2 mks)
 - (ii) f_{yxz} (3 mks)
- e) Locate any relative extreme points and determine their nature for the function $f(x_1, x_2, x_3) = 25 x_1^2 x_2^2 x_3^2$ (5 mks)
- f) Verify that the Tailor series expansion for the function f(x) = sinx about x = 0 is $cos x = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n+1}}{(2n+1)!}$ hence find the Maclaurin series for f(x) = x sin x (5 mks)
- g) Find the volume in the 1st octant between the planes z = 0 and z = x + y + 2 and inside the cylinder $x^2 + y^2 = 16$ (5 mks)

QUESTION TWO (20 MARKS)

a) Given that z is a differentiable function near each (x, y) for $xz^2 + e^{4y}\cos 5z - 8y^2 = 15$ find

$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ (5 mks)

- b) Consider the series $1 + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{7}} + \cdots$ using the integral test, determine whether the series converges or diverges (5 mks)
- c) Find the possible local maximum and minimum points of the function $f(x, y) = x^3y 3xy + 11$ (5 mks)
- d) Find the maximum value of production function f(x,y) = 12x + 3y subject to the condition xy = 4 (5 mks)

QUESTION THREE (20 MARKS)

- Suppose that $xy + yz^3 + xz = 0$ determines z implicitly as a function of x and (5 mks)
- b) Consider the series $\sum_{n=0}^{\infty} \frac{1}{n}$ use ratio theorem to show that the series diverges

(5 mks)

c) Determine whether the series converges and if so determine the sum

$$\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots$$
 (5 mks)

d) Evaluate
$$\int_0^1 \int_2^3 \int_{-1}^1 2(xy + yz) dx dy dz$$
 (5 mks)

QUESTION FOUR (20 MARKS)

a) Let $z = y^2 e^x$ and $x = 2t^2 - s$ and $y = s^2 sint$ find

(i)
$$\frac{\partial z}{\partial t}$$
 (4 mks)
(ii) $\frac{\partial z}{\partial s}$ (4 mks)

(ii)
$$\frac{\partial z}{\partial s}$$
 (4 mks)

b) If $R = \{x, y \mid 1 \le x \le 2 \text{ and } 0 \le y \le 1\}$ evaluate $\iint_R (8y^2 - 16y^2) dA$

(4 mks)

- Test the convergence of the following limit $s_n = \frac{n^3 5}{2n^3 3n + 4}$ (3 mks)
- d) Find the volume of the solid under the cylinder $x^2 + z^2 = 1$ and above the triangle in the xy-plane bounded by y = x, y = 2x and x = 1(5 mks)

QUESTION FIVE (20 MARKS)

Find and classify all critical points of $f(x, y) = 3x^2 - 2xy + y^2 - 3y$

(7 mks)

b) Find the radius and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(-4)^n (x-7)^n}{n8^{n+1}}$$
 (6 mks)

c) Use the Lagrange multipliers to find the local extrema of the function f(x, y) = 3xy subject to 2x + y = 8

(7 mks)