

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2015/2016 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 222

COURSE TITLE: CALCULUS III

DATE:

13/5/16

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

[Question One, 30mks]

- (a) i) Differentiate the following terms giving an example in each case;

 Sequence and Series [4mks]
 - ii) Find a possible n^{th} term for the sequence whose first 5 terms are indicated, hence find the 6^{th} term: $-\frac{1}{5}, \frac{3}{8}, -\frac{5}{11}, \frac{7}{14}, -\frac{9}{17}$ [4mks]
 - (iii) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$$

[5mks]

(b) (i) Suppose that w = f(u, v) is a differentiable function and that given u = ax + by and v = ax - by. Show that

$$\frac{\partial w}{\partial x} \cdot \frac{\partial w}{\partial y} = ab \left[\left(\frac{\partial w}{\partial u} \right)^2 - \left(\frac{\partial w}{\partial v} \right)^2 \right]$$

[6mks]

- (ii) If $z = x^2 \tan^{-1} \frac{y}{x}$, find $\frac{\partial^2 z}{\partial x \partial y}$ at (1, 1). [4mks]
- (iii) If $z = e^{xy^2}$, $x = t \cos t$, $y = t \sin t$, compute $\frac{dz}{dt}$ at $t = \frac{\pi}{2}$. [3mks]
- (c) Using the implicit theorem, find the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y by the equation

$$x^3 + y^3 + z^3 + 6xyz = 1$$

[4mks]

[Question Two, 20mks]

- (a) (i) Define Taylor Series expansion of a function f(x) about a point $x_0 = a$. [2mks]
 - (ii) Verify that the Taylor series expansion for the function $f(x) = \cos x$ about x = 0 is;

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

Hence find the Maclaurin series for the function $f(x) = x \cos x$ [6mks]

- (b) Find the directional derivative of $F=x^2yz^3$ along the curve $x=e^{-u},\ y=2\sin u+1,\ z=u-\cos u$ at the point p where u=0. [7mks]
- (c) Compute the gradient and the equation of the tangent plane of an ellipsoid

$$2x^2 + 4y^2 + z^2 - 45 = 0$$
 at $(2, -3, -1)$

[5mks]

[Question Three, 20mks]

- (a) A rectangular box, open at the top, is to have a volume of 32 cubic feet. What must be the dimensions so that the total surface is a minimum? [7mks]
- (b) Locate and classify all critical points for $f(x,y) = 4xy x^4 y^4$ [8mks]
- (c) If $f(\frac{y}{x})$ is any differentiable function of $\frac{y}{x}$ and

$$u = f\left(\frac{y}{x}\right) + (x^2 + y^2)^{\frac{1}{2}}$$

show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = (x^2 + y^2)^{\frac{1}{2}}$$

[5mks]

[Question Four, 20mks]

- (a) Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2, y = 2 and the three co-ordinate planes. [4mks]
- (b) Suppose that $w = \sqrt{x^2 + y^2 + z^2}$, $x = \cos \theta$, $y = \sin \theta \& z = \tan \theta$, find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$. [5mks]
- (c) Find the local and absolute minimum and maximum value of the function f(x,y) = 6x + 4y 7 on the ellipse $3x^2 + y^2 = 28$ [11mks]

[Question Five, 20mks]

(a) The temperature at the point P(x, y, z) in a solid piece of metal is given by

$$f(x, y, z) = e^{2x + y + 3z}$$

degrees. In what direction at point (0,0,0) does the temperature increase most rapid. [5mks]

- (b) Find local extrema of $f(x,y) = 3x^2 + y^3$ on the circle $x^2 + y^2 = 9$ [8mks]
- (c) Evaluate the triple integral

$$\int\int\int_{\Re}(x^2+y^2+z^2)dxdydz$$

given that the region \Re is bounded by $x+y+z=a, \quad (a>0),$ x=0,y=0,z=0.