

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 222

COURSE TITLE: CALCULUS III

DATE:

10/08/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Use the 1st principles to determine $\frac{\partial f}{\partial x}$ given that $f(x,y) = 3xy^2 4x^2y + 0.75y^3$ (4 mks)
- b) A sphere has a volume of 106.34 cm³
 - (i) Find the radius of the sphere that will yield minimum surface area

(4 mks)

(ii) Find the minimum surface area

(2 mk)

c) Given that y is a differentiable function near each (x, z) for $4zy^2 - e^{-3x}sin3y + z^2 = 10$ find

 $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$

(5 mks)

d) Find the radius and interval of convergence of the series

 $\sum_{n=1}^{\infty} \frac{(-2)^n (x-6)^n}{n^{3n+1}}$

(5 mks)

- e) A particle moves in a circular motion such that its position is given by x = 2sint and y = cos3t for any time t. A force of magnitude $f(x,y) = 0.4x^2 + 4y^2 + xy$ is exerted on the particle at a point (x,y). Find an expression for the rate of change of magnitude of the force exerted by the particle with respect to time when t = 3 (5 mks)
- exerted by the particle with respect to time when t = 3 (Section 1) Verify that the Tailor series expansion for the function $f(x) = \cos x$ about

x = 0 is $sinx = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n}}{(2n)!}$ hence find the Maclaurin series for f(x) = xcosx

QUESTION TWO (20 MARKS)

a) Evaluate $\lim_{(x,y)\to(2,2)} \frac{x^2-xy}{\sqrt{y}-\sqrt{x}}$ (4 mks)

b) Let $f(x, y, z) = y\cos(xz) - e^{-2x^2y} + 4\ln(xyz)$. Find

Let $f(x, y, z) = y\cos(xz) - e^{-y} + 4\ln(xyz)$. If (i) f_{yy}

(2 mks)

(5 mks)

(ii) f_{xyz}

(3 mks)

- c) Find the maximum value of production function f(x, y) = 6xy subject to budget constraint 4x + y = 10 (5 mks)
- d) Locate any relative extreme points and determine their nature for the function $f(x_1, x_2, x_3) = 10x_1^2 + 15x_2^2 + 5x_3^2 60x_1 + 90x_2 40x_3 + 100$

(6 mks)

OUESTION THREE (20 MARKS)

- a) Find and classify all critical points of $f(x,y) = x^2 12y^2 4y^3 + 3y^4$ (7 mks)
- b) Use the Lagrange multipliers to find the local extrema of the function $f(x,y) = 4y^2 + x^3$ Subject to $x^2 + y^2 = 1$ (6 mks)
- c) The area of a triangle is given by $A = \frac{1}{2}acsinB$ when a = 15cm, c = 8cm and $C = 30^{\circ}$. Find
 - (i) The rate of change of A with respect to a when c and B are constant (2 mks)
 - (ii) The rate of change of A with respect to B when a and c are constant (2 mks)
 - (iii) The rate of change of c with respect to a when A and B are constant (3 mks)

QUESTION FOUR (20 MARKS)

- a) Let $z = e^{3x} tany$ and $x = 2st^2 4$ and y = 3t 2s find
 - (i) $\frac{\partial z}{\partial t}$ (4 mks)
 - (ii) $\frac{\partial z}{\partial s}$ (3 mks)
- b) If $R = \{x, y \mid 0 \le x \le 3 \text{ and } 0 \le y \le 5\}$ evaluate $\iint_R (4xy^2 + 3x^2y^3) dA$ (3 mks)
- c) Find the volume of the solid bounded by the graphs of $z = 9 y^2$, x + z = 2, x = 0, and z = 0 (5 mks)
- d) Consider the series $1 + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{7}} + \cdots$ using the integral test, determine whether the series converges or diverges (5 mks)

QUESTION FIVE (20 MARKS)

- a) Consider the series $\sum_{n=0}^{\infty} \frac{1}{n}$ use ratio theorem to show that the series diverges (5 mks)
- b) Find the area of the portion of the cylinder $x^2 + z^2 = 25$ lying inside the cylinder $x^2 + y^2 = 25$ (5 mks)
- c) For what values does the series converge $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n}$ (5 mks)
- d) Find the volume in the 1st octant between the planes z = 0, and z = x + y 3And inside the $x^2 + y^2 = 4$ (5 mks)