

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREES OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: MAT 201

COURSE TITLE: LINEAR ALGEBRA I

DATE: 17/10/2018

TIME: 8 AM- 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question one (compulsory)

[30 marks]

- a) i) let V be a vector space. Given that the set $U = \{u_1, u_2, u_3, ..., u_n\}$ is a subset of V, explain the meaning of U is a basis of V. (3 mks)
 - ii) give the standard basis for R^2 and the standard basis for R^3 . (5 mks)
- b) state any three examples of a vector space. (3 mks)
- c) determine whether the set of vectors in R^3 is linearly independent or linearly dependent $S = \{(1,2,3), (0,1,2), (-2,0,1)\}$ (9 mks)
- d) define the following
 - i. nullity of a linear transformation T: $V \rightarrow W$ (3 mks)
 - ii. range of a linear transformation T: $V \rightarrow W$ (3 mks)
 - iii. rank of a linear transformation $T:V \to W$ (3 mks)
 - iv. dimension of a vector space. (2 mks)

Question Two (20 Marks)

a) the linear transformation T: $R^n \to R^m$ is defined by T(v) = Av. Find the dimensions of R^n and R^m for the linear transformation represented by each matrix

i.
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 3 & 0 \\ 4 & 2 & 1 \end{pmatrix}$$

ii.
$$A = \begin{pmatrix} 2 & -3 \\ -5 & 0 \\ 0 & -2 \end{pmatrix}$$

iii.
$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 3 & 1 & 0 & 0 \end{pmatrix}$$

(9 mks)

b) Show that the linear transformation T: $R^2 \rightarrow R^2$ represented by the matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 has the property that it rotates every vector in R² counterclockwise about the origin through the angle θ . (11 mks)

Question three (20 marks)

- a. When is an nxn matrix A invertible? (2 mks)
- b. If A is an invertible matrix, then its inverse is unique. Prove (7 mks)
- c. Show that B is the inverse of A where,

$$A = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix} \quad \text{and } B = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$$
 (5 mks)

d. Compute A-2 in two ways and show that the results are equal given that

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} \tag{6 mks}$$

Question four (20 marks)

- a) A non-empty subset u of a vector space V is a subspace of V iff
- i) for any xεu and yεu, the sum x+yεu.
- ii) for any $x \in u$, $\alpha x \in u$, α is a scalar. Prove (10 mks)
- b) U, W are subspaces of a vector space V. Show that $U \cap W$ is also a subspace of V. (10 mks)

Question Five (20 marks)

- a. Consider the set of vectors $V = \{ [x,y,z]: ax+by+cz=0 \}$ where a, b, c are scalars. Show that V is a vector space. (10 mks)
- b. Let V be a vector space, then
 - i. $\alpha.0 = 0$ for every scalar α
 - ii. 0.x = 0 for every x in V
 - iii. If $\alpha . x = 0$ then $\alpha = 0$ or x = 0 (10 mks)