

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE: MAT 201

COURSE TITLE:

LINEAR ALGEBRA I

DATE:

15/01/18

TIME: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

Question one (compulsory)

[30 marks]

- a) Let V be a vector space over a field F. given that $U = \{u_1, u_2, ..., u_n\}$ is a subset of V, explain the meaning of the following; U is
 - i. a subspace of V

(2 mks)

ii. linearly independent

(2 mks)

iii. a basis for V

(2 mks)

b) consider the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$

Find the reduced row echelon equivalence of A.

(3 mks)

c) solve the system

$$x_2 + x_3 - 2x_4 = -3$$

$$x_1 + 2x_2 - x_3 = 2$$

$$2x_1 + 4x_2 + x_3 - 3x_4 = -2$$

$$x_1 - 4x_2 - 7x_3 - x_4 = -19$$

(10 mks)

d) find the kernel of the linear transformation T: $R^2 \rightarrow R^3$ represented by

$$T(x_1, x_2) = (x_1 - 2x_2, 0, -x_1)$$

(5 mks)

- e) Let T: $R^5 \rightarrow R^7$ be a linear transformation
 - i. Find the dimension of the kernel of T if the dimension of the range is 2 (2 mks)
 - ii. Find the rank of T if the nullity of t is 4

(2 mks)

iii. Find the rank of T if ker $(T) = \{0\}$

(2 mks).

Question two (20 marks)

- a) If W is a nonempty subset of a vector space V, then W is a subspace of V iff the following closure conditions hold.
 - i. If u and v are in W, then u+v is in W.
 - ii. If u is in W and c is a scalar, then cu is in W. Prove (6 mks)
- b) Let W be the set of all 2x2 symmetric matrices. Show that W is a subspace of the vector space $M_{2,2}$, with the standard operations of matrix addition and scalar multiplication.

(4 mks)

- c) If V and W are both subspaces of a vector space U, then the intersection of V and W is also a subspace of U. (6 mks)
- d) Show that the subset of R^2 consisting of all points on the unit circle $x^2+y^2=1$ is not a subspace. (4 mks)

Question three (20 marks)

- a) Consider the set of vectors $V = \{[x, y, z] : ax + by + cz = 0\}$ where a, b, c are scalars. Show that V is a vector space. (10 mks)
- b) Let V be a vector space, then
 - i. $\alpha.0 = 0$ for every scalar α
 - ii. 0.x = 0 for every x in V
 - iii. If $\alpha x = 0$ then $\alpha = 0$ or x = 0 (10 mks)

Question four (20 marks)

a) Show that the set of vectors

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ spans } R^3$$
 (5 mks)

- b) If A and B are invertible matrices of size n, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$ (6 mks)
- c) Determine whether the set of vectors in P_2 is linearly independent or linearly dependent $S = \{1 + x 2x^2, 2 + 5x x^2, x + x^2\}$ (9 mks)

Question Five (20 marks)

- a) When is an nxn matrix A invertible? (2 mks)
- b) If A is an invertible matrix, then its inverse is unique. Prove (7 mks)
- c) Show that B is the inverse of A where,

$$A = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} \quad \text{and } B = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$$
 (5 mks)

d) Compute A-2 in two ways and show that the results are equal given that

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} \tag{6 mks}$$