



(Knowledge for Development)

# KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE** 

COURSE CODE:

**MAT 201** 

COURSE TITLE: LINEAR ALGEBRA I

DATE:

06/08/18

TIME: 2 PM -4 PM

# INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

#### **QUESTION ONE (30 MARKS)**

a. Give the definition of a vector space.

(10 mks)

- b. Show that the vector  $\mathbf{v_1}$  is a linear combination of  $\mathbf{v_2}$  and  $\mathbf{v_3}$  given that  $\mathbf{v_1}$ =(1,3,1),  $\mathbf{v_2}$ =(0,1,2) and  $\mathbf{v_3}$ =(1,0,-5). (4mks)
- c. Find the null space of the matrix  $A = \begin{bmatrix} 1 & 2 & -2 \\ 3 & 6 & -5 \\ 1 & 2 & 0 \end{bmatrix}$ . (4mks)
- d. Find the coordinate matrix  $P=3x^3-2x^2+4$  relative to the standard basis in  $P_3$ ,  $S=\{1,x,x^2,x^3\}$ .(4mks)
- e. Define the basis of a vector space.

(3mks)

f. Show that the following set is a basis for  $\mathbb{R}^3$ .  $S = \{(I,0,0),(0,1,0),(0,0,1)\}.$  (5mks)

### **QUESTION TWO (20 MARKS)**

Show that a set of a  $2\times3$  matrices with operations of matrix addition and scalar multiplication is a vector space. (20mks)

### **QUESTION THREE (20 MARKS)**

a. Define a linear transformation.

(3mks)

b. A linear transformation is defined by a matrix function  $T: \mathbb{R}^2 \to \mathbb{R}^3$  is defined as T(v) = Av = Av

$$\begin{pmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

(i) Find T(v), where v=(2,-1)

(3mks)

(ii) Show that T is a linear transformation from  $\mathbb{R}^2$  into  $\mathbb{R}^3$ .

(3mks)

c. Find the kernel of the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^2$  defined by T(x) = Ax where

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 2 & 3 \end{pmatrix}$$

(11mks)

## **QUESTION FOUR (20 MARKS)**

a. Determine if the following vectors from  $\mathbb{R}^3$  are linearly independent linearly dependent.

(10 mks)

b. Find the rank and nullity of the matrix  $B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 5 \\ 0 & 1 & 3 \end{bmatrix}$ 

(10mks)

#### **QUESTION FIVE (20 MARKS)**

- a. Let D be a linear operator from  $P_3$  to  $P_2$  defined by  $D(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$ . Find the matrix representative of D with respect to the basis  $B = \{1, x, x^2, x^3\}$  of  $P_3$  and the basis  $B^1 = \{1, x, x^2\}$  of  $P_2$ . Use matrix to find  $D(5-7x+11x^2+4x^3)$ . (10mks)
- b. Let  $B = \{(-3,2),(4,2)\}$  and  $B^1 = \{(-1,2),(2,-2)\}$  be bases for  $\mathbb{R}^2$  and let  $A = \begin{pmatrix} -1 & 4 \\ 5 & -3 \end{pmatrix}$  be the matrix for  $T: \mathbb{R}^2 \to \mathbb{R}^2$  relative to B. Findthe matrix relative to  $B^1$ . (10mks)