

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 123

COURSE TITLE: LINEAR ALGEBRA

DATE: 17/10/18 **TIME:** 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) For which rationals a and b does the following system have
 - i) No solution
 - ii) A unique solution
 - iii) Infinitely many solutions

$$x_1 - 2x_2 + 3x_3 = 4$$

$$2x_1 - 3x_2 + ax_3 = 5$$

$$3x_1 - 4x_2 + 5x_3 = b$$
(5 marks)

b) Find the inverse of the matrix A by first getting the adjoint.

$$A = \begin{pmatrix} 1 & 3 & -4 \\ 0 & -2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$
 (6 marks)

- c) Distinguish between linear dependence and linear independence of vectors in a vector space and hence determine if the set $S = \{2 + x + x^2, x 2x^2, 2 + 3x x^2\}$ is linearly independent in P_2 (polynomials of second degree) (5 marks)
- d) Solve using Cramer's rule

$$2x_1 + x_2 - 2x_3 = 10$$

$$3x_1 + 2x_2 + 2x_3 = 1$$

$$5x_1 + 4x_2 + 3x_3 = 4$$
(6 marks)

- e) Let the vector space V be the set of all polynomials of degree 3 and W be the set of all polynomial of degree 3 or less but with a constant zero term. Is W a subspace of V. (3 marks)
- f) Define the term linear transformation and hence determine if $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $T(x_1, x_2) = (x_1 + x_2, 2x_1 x_2)$ is a linear transformation. (5 marks)

QUESTION TWO (20 MARKS)

a) i) Find the rational number t for which the following system is consistent and solve the system for this value of t

$$x_1 + x_2 = 2$$

$$x_1 - x_2 = 0$$

$$3x_1 - x_2 = t$$

ii) Reduce to echelon form and hence find the rank of the matrix

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \\ 4 & 2 & 2 \end{pmatrix}$$
 (6 marks)

- b) If A_{nxn} is a matrix, show that the following statements are equivalent.
 - i) A is invertible
 - ii) $A\underline{X} = \underline{b}$ has a unique solution for any \underline{b} .
 - iii) $A\underline{X} = \underline{O}$; has a trivial solution only.
 - iv) A is row equivalent to I_n . (7 marks)
- c) Solve by getting the inverse

$$x_1 - 2x_2 + x_3 = 7$$

$$2x_1 - x_2 + 4x_3 = 17$$

$$3x_1 - 2x_2 + 2x_3 = 17$$
(6 marks)

QUESTION THREE (20 MARKS)

- a) i) If a matrix A_{nxn} is invertible, then show that the inverse is unique. (3 marks)
- ii) Find the inverse of the matrix below by first appending an identity matrix I to the right hand side of A and reducing the left hand side of $\begin{bmatrix} A | I \end{bmatrix}$ to identity matrix.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & 0 & 3 \end{pmatrix} \tag{4 marks}$$

- b) Let the vector space $V = \Box^4$ and $S = \{(1,-2,0,3), (2,3,0,-1), (2,-1,2,1)\}$. Determine if $(3,9,-4,-2) \in L(S)$ (where L(S) is the set spanned by S). (4 marks)
- c) Determine whether or not the following vectors in \Box ³ are linearly dependent $u_1 = (1, -2, 1), u_2 = (2, 1, -1), u_3 = (7, -4, 1)$ (4 marks)
- d) If $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V then show that every set with more than n vectors is linearly dependent. (5 marks)

QUESTION FOUR (20 MARKS)

a) Find the basis and dimension of the solution space for the equations

$$2x_{1} + 2x_{2} - x_{3} + x_{5} = 0$$

$$-x_{1} - x_{2} + 2x_{3} - 3x_{4} + x_{5} = 0$$

$$x_{1} + x_{2} - 2x_{3} - x_{5} = 0$$

$$x_{3} + x_{4} + x_{5} = 0$$
(5 marks)

- b) For the vectors $v_1 = (1,1,-1)$, $v_2 = (4,0,1)$, $v_3 = (3,-1,2)$
 - i) Find a basis for the subspace spanned by these vectors.
 - ii) Write the remaining vectors as a linear combination as the vectors in the basis.
 - (4 marks)

c) Given that $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined as

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 - x_3 \\ -x_3 + x_2 \\ x_1 - x_2 - x_3 \end{pmatrix}, \text{ find the matrix of T with respect to standard basis.}$$

(3 marks)

d) Given
$$v_1 = t^3 - 2t^2 + 4t + 1$$
; $v_2 = 2t^3 - 3t^2 + 9t - 1$; $v_3 = t^3 + 6t - 5$; $v_4 = 2t^3 - 5t^2 + 7t + 5$

- iii) Find a basis for the subspace spanned by these vectors.
- iv) Write the remaining vectors as a linear combination of the vectors in the basis. (6 marks)
- e) Given that $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined as $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x 3y + 4z \\ 5x y + 2z \\ 4x + 7y \end{pmatrix}$, find the matrix of T with respect to standard basis. (2 marks)

QUESTION FIVE (20 MARKS)

a) By first getting the adjoint, find the inverse of the matrix

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 4 \\ 3 & -2 & 2 \end{pmatrix}$$
 and hence solve by inverse method

$$x-2y+z=7$$

 $2x-y+4z=17$
 $3x-2y+2z=14$ (9 marks)

b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as

$$T(X) = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. \text{ Find}$$

- i) Basis for image of T
- ii) Basis for Kernel of T
- v) Rank and nullity of T.

(7 marks)

- c) Define the following
 - i) Symmetric Matrix
 - ii) Homogenous system
 - iii) Transpose of a matrix
 - iv) Elementary matrices

(4 marks)